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PREFACE

Modern mathematics has tended to emphasize more and more
the abstract point of view because of its economy and power and
the light it throws on special cases. To guide the student more
adequately in this direction, two new chapters have been added
in this edition: Chap. XIII on the general theory of sets and
relations and Chap. XTIV on the properties of abstract metric
spaces. A properly prepared student may goimmediately tothese
chapters after a brief look at Chap. 1. But since mgny students
can appreciate a general theory only after a thorough examination
of more familiar special systems, the first twelve chapters are
retained essentially as they appeared in the first edition. The
notions of continuity, derivative, and the Riemann integral,
familiar from the caleulus, are studied here in connection with
the more general notions of semicontinuily, derivates, and the
Lebesgue integral. The reader is guided toward the abstract
point of view by the study of several postulate systems in Chap. 1T
and by the study of several function spaces in Chaps. V11, X,
X1, and XII.

Since mathematical proofs are deductive in nature, a brief
exposition of some of the fundamental concepts and methods of
deductive logic is included in Chap. I. Chapter 11 begins with
the postulates of Peano for the natural numbers and outlines a
method for constructing the real-number system. It includes
the theorem on the embedding of an abstract commutative semi-
group in a group and the theorem on the completion of a linearly
ordered system by means of Dedekind cuts.  Chapter V includes
a generalization of the theorem of the mean to nondifferentiable
functions and a careful treatment of total differentials of any
order for functions of several variables. Chapter VIII contains
some theorems on the extent of the domain of functions defined
implicitly and a theorem on the existence of fixed points for con-
tinyous transformations. In Chap. IX are some theorems on the
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extent of the domain of solutions of ordinary differential equa-
tions. The Lebesgue integral is introduced in Chap. X by the
method of F. Riesz, which is preferred by the author because it
leads directly to the fundamental theorems on approximation and
convergence. Thus the reader may learn about the main fea-
tures of the Lebesgue integral from the first six sections of Chap.
X. Some miscellancous formulas and theorems connected with
Lebesgue integrals are collected in Chap. XI. A large part of
Chaps. X and XI is immediately interpretable for the Lebesgue-
Stieltjes integral of functions of several variables, the exceptions
being marked with a dagger. The classical Stieltjes integral for
functions of one variable is discussed in Chap. XII, and addi-
tional properties of the Lebesgue-Stieltjes integral are developéd.
A large number of convergence theorems are collected in Chaps.
XI and XII. In view of the material in Chaps. X to XII, the
treatment, of Riemann integrals in Chap. VI may seem unncces-
sary. However, the Ricmann integral is a strictly elementary
concept of the calculus, and the treatment given it in Chap. VI
introduces the student to ideas that are useful in developing the
integrals of Lebesgue and Stieltjes. The careful study of uniform
convergence in Chap. VII is needed to prepare the student to
understand the more general types of convergence associated with
the Lebesgue integral. The fundamental theorem of Moore on
interchange of order of limits is used repeatedly in later chapters.
Chapter XI1IT includes a carcful study of ordinal and cardinal
numbers, using the definition of ordinals introduced by von
Neumann. It also treats the axiom of choice and the several
commonly used propositions which are equivalent to it.
Sclections from the book may be used as bases for a variety
of courses. For example, Chaps. I to VII, with portions of
Chaps. VIII and IX, form a substantial introduction to the
classical theory of functions of real variables. Chapters III to
VII may be used for a shorter course. A course on fundamental
concepts of mathematics may be based on Chaps. I, II, and
XIII. Chapter XIV may scrve as an introduction to abstract
topology. Chapter X may be used for a short course on the
Lebesgue integral of functions of one variable, with the measure
m(2) of an interval interpreted as its length.  Part of Chap. XII
may be read independently of the rest as an exposition of the
Stieltjes integral. A more extended course on the Lebesgue-
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Stieltjes integral may be based on Chaps. X, XI, and XII, with
m(z) as a general-measure function. The theory is developed
here in such a way that the student who has mastered it will
readily understand its generalizations to abstract spaces.

For some of the theorems the proofs are only sketched or are
omitted entirely. The completion of these proofs is an impor-
tant exercise for the reader, but may require some guidance from
an instructor. In addition, many of the chapters contain lists of
exercises, of varying degrees of difficulty.

At the end of each chapter selected references are given relat-
ing to the content of that chapter. The student should form the
habit of making use of some of these references. Numbers in
square brackets are used in the text to indicate references from
these lists.

For the sake of coherence, the two new chapters contain some
repetitions of material. For reasons explained in the text, they
also introduce a few notations and definitions which are incon-
sistent with those used in the earlier chapters.

The author acknowledges his indebtedness to many books and
authors. It would be impossible to state this indebtedness in
detail, and in fact little attempt is made to give a historical
account or to give credit to sources. However, the profound
influence of Professors G. A. Bliss and E. H. Moore will no doubt
be obvious to many who rcad these pages.

Special acknowledgments are due to Professors R. W. Barnard,
W. T. Reid, and E. H. Spanier for valuable criticisms and sug-
gestions. Professor Spanier also contributed many of the exer-
cises in Chaps. XIII and XIV.

LAwWRENCE M. GRAVES
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CHAPTER I
INTRODUCTION

1. The Purpose of an Introductory Course in the Theory of
Functions.—The following chapters are written with a threefold
purpose in mind. The first is to afford the student a survey of
the field of analysis from its foundations. Modern analysis is
based on the system of natural numbers and its properties. In
Chap. II is outlined a method for constructing the real number
system and for proving its properties on the basis of the proper-
ties of the system of natural numbers. The second purpose is
to review the fundamental concepts and theorems of the calculus.
The reader is supposed to have reached the stage where he can
understand precise statements of these fundamental concepts and
rigorous proofs of the theorems. Tn the following chapters are
included some theorems for which fallacious or incomplete proofs
are frequently given in elementary calculus texts. The third
purpose is to acquaint the student with the theorems and the
methods of investigation that are fundamental for modern
research in analysis. These theorems and methods are fre-
quently used also in other branches of mathematics and in the
applications of mathematics.

It should be emphasized that mathematics is concerned with
ideas and concepts rather than with symbols. Symbols are tools
for the transference of ideas from one mind to another. Concepts
become meaningful through observation of the laws according
to which they are used. This introductory chapter is concerned
with certain fundamental notions of logic and of the calculus of
classes. Tt will be understood better after the student has
become familiar with the use of these concepts in the later chap-
ters. Consequently it is recommended that after a bird’s-eye
view of the contents of Chap. I, the student should pass on to a
study of Chap. II, returning to Chap. I from time to time as
occasion arises.

Numbers in brackets refer to the list of references at the end
of the chapter.

1



2 INTRODUCTION [Caap. I

2. Fundamental Logical Notions.—Logic is largely concerned
with the study of the laws governing the use of logical connectives
or operators which apply to statements to form more complex
statements.(¥ The situation is quite analogous to elementary
algebra, which is concerned with the laws governing the opera-
tions of addition, multiplication, etc., as applied to numbers.

As undefined operations on statements, whose meaning is
generally understood, we may take negation, conjunction, and
alternation. If p and ¢ denote statements, the negation of p
is denoted by —p (or sometimes by ~ p, or by p’). The con-
junction of p and ¢ is denoted by p.q, read “p and ¢.” The
alternation of p and ¢ is denoted by p V ¢, read “p or ¢.” 'We
wish to consider these operations independently of the truth or
falsity of the statements p and ¢. To make the meaning) of
p V q completely unambiguous it is perhaps necessary to remark
that the statement p V ¢ is true when p and ¢ are both true as
well as when only one of them is true.

Other logical connectives or operators may be defined in terms
of those already given. The conditional is denoted as follows:
P D g, which may be read “p only if ¢,” or “if p then ¢.” This
is defined to mean

-pVq
Thus of the following four conditional statements:
2:1) If 1 <2, then 3 < 4,
(2:2) If 2 < 1, then 3 < 4,
(2:3) If 1 <2, then4 < 3,
(2:4) If 2 <1, then4 < 3,

only (2:3) is false, while the other three are true. The words
“implies” and “implication’’ have not been used in the above
discussion because they have been used by different authors with
different meanings and have given rise to some controversy and
misunderstanding.

It should be noted that the symbols or formulas

pVg and p g

* In what follows, the words “statement,” “proposition,” and “sentence’’
are considered as synonymous. Some writers on logic prefer one, some
another. Quine [2] defines statements as those sentences which are true
and those which are false,
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etc., are not themselves statements. They become statements
only when specific statements are substituted for the symbols p
and g, 1.e., when p and ¢ are taken to stand for specific state-
ments. The same is true of

(2:5) —(p. —p),
(2:6) pV —p.

However, we may form statements from (2:5) and from (2:6) in
another way by prefixing the words “ Whatever statement p is,

., or “For every statement p, . . ..” The statements
formed in this way happen to be true in both these cases. Irre-
spective of their truth or falsity, they are said to be formed from
(2:5) and (2:6) by application of the universal quantifier and
are frequently written as follows:

(2:7) (®). —(p. —p),
(2:8) ®.pV —p

The variable p in (2:5) and (2:6) is called a real or free variable,
while in (2:7) and (2:8) it is said to be apparent or bound. There
is some question as to whether in the use of the universal quan-
tifier, the variable that is bound by it may be allowed to stand
for any entity whatever. The use of the notion of the “class of
all cntities whatever” leads to contradictions if no safeguards
are set up. Different types of safeguards have been proposed
by various workers in logic. However, it is clear that if p is
replaced in (2:5) or (2:6) by the number 3 or by the concept
fright, the result is not a statement. In the formulas (2:7) and
(2:8) the universal quantifier refers implicitly to the class of all
statements p. In mathematical practice it turns out that when-
ever the universal quantifier occurs it may always be taken to
refer to some specific class of objects, which is generally recog-
nized to be sufficiently well determined to be the subject of dis-
course. This class should be explicitly indicated whenever its
nature is not sufficiently obvious from the context. The method
of procedure just indicated seems to be a practical way of avoid-
ing the paradoxes. It is desirable to use specific classes as the
subjects of discourse but, since it is always possible to imagine
new objects which are not members of a given class, no such
class can be regarded as the universal class. For the same reason
the objection may well be raised that the class of all statements
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p, referred to above, is not a well-determined class. In many
ways a pragmatic approach to mathematices scems preferable to
that of the modern logicians and is in practice adopted by most
mathematicians, either consciously or unconsciously. The work
of the logicians is none the less valuable and interesting.

Another logical operator of importance is the biconditional,
for which we usc one of the notations: p ~ ¢, or p = ¢q. This
is to be read “p if and only if ¢,” and is defined to mean

PDgqg.q2D0p

We shall use the symbol “~7" for this operator except in defipi-
tions, where the other symbol “ =" will be used, with the symbol
whose use is being defined placed to the left of the sign.

The following important logical laws relate to the varim:s
cperators we have been discussing.  They hold for all statements
p, ¢, and 5. For convenience the symbol for the universal quans
tifier is omitted in stating these laws. This omission is quite
frequently practiced in mathematical writing and will cause no
confusion.

(2:9) (p-g9) ~ (¢.p)-
(2:10) eV q) ~I(qV p).
(2:11) (p~¢q) ~ (g~ p).
(2:12) —(=p) ~p.

(2:13) —(p. —p).

(2:14) pV —p.

(2:15) —(p.g) ~(=pV —q.
(2:16) =V g~(—p —9.
(2:17) P9 ~(—qD —p).
(2:18) =@ D g9 ~(p. —9.
(2:19) (pV@oVs~pV (¢V s).
(2:20) (p.9).s ~ p.(q.8).

(2:21) (pV @.s ~ (ps) V (g.s).
(2:22) (pg) Vs~(pVs)gVs)

The first three, (2:9), (2:10), and (2:11), state properties of
symmetry for ., V, and ~, i.c., they are commutative laws;
(2:12) is the law of double negation; (2:13) is the law of con-
tradiction; (2:14) is the law of the excluded muddle; (2:15) and
(2:16) are called de Morgan’s laws; (2:17) is the law of contra-
position for the conditional; (2:19) and (2:20) are associative
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laws; and (2:21) and (2:22) are distributive laws. Note that we
are here asserting these statements to be true. The assertion
or denial of a statement is a statement about a statement, and
so differs from such an operation as the negation of a statement,
which transforms a statement into another statement. Thus

“Jones is ill” is false,
differs from
— (Jones is ill).

For the study of logic and its structure, it is interesting to note
that all the operators we have been discussing may be defined in
terms of a single operator, called ‘“joint denial,” which is denoted
by (p | @), read “ncither p nor ¢.””®® The three operators that
we have previously taken as primitive may be defined in terms of
this new operator as follows:

(2:23) —-p=(p | p).
(2:24) P9 =(—=p | —9.
(2:25) eVvVeo=-0ml|9g.

On the basis of these definitions the law of the excluded middle
becomes a formal consequence of the laws of double negation and
of contradiction. The meaning of the operator ( | ) may be
defined by means of a truth table, giving the truth value of the
statement (p | ¢) in terms of the truth values of p and ¢, as
follows. Here “T” stands for “true’” and “F” for “false.”

P q )
T T ¥
F T F
T Ir B
¥ F T

Thus all the logical operators so far mentioned, except the uni-
versal quantifier, are definable by means of truth tables, and the
relations between them may be derived by means of truth tables,
so that if we use the definitions (2:23) to (2:25) above, all the
logical laws (2:9) to (2:22) are implicitly contained in the truth-
table definition of ( | ).

A system which could perhaps be called a system of logic can
be constructed on the basis of a truth table with three or more

1 See, for example, Quine |3), pp. 451
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kinds of entries. In such a system more types of operators
present themselves for consideration.®

Another quantifier of frequent occurrence is the existential
quantifier. If ¢(z) is a statement form or “propositional func-
tion” involving & variable z, the symbol

(2:26) 3z 5 ¢(x)

is read “there exists z such that ¢(z).”” The symbol 3 is read
“there exists” and the symbol 5 is read ‘“‘such that.” The sym-
bol » may be used also in other situations to connect a property
or a statement to an entity. It is interesting to note that the
existential quantifier may be defined in terms of the universal
quantifier and the operation of negation. That is, in terms

symbols, the formula (2:26) may be defined to mean \

(2:27) —[@).—q@)].

It is important to be familiar with this relation between (2:26)
and (2:27), especially in connection with the making of indirect
proofs. Formulas (2:15) to (2:18) are also frequently used in
the making of indirect proofs.

It has already been mentioned that the symbol for the uni-
versal quantifier will sometimes be omitted. Where it is neces-
sary to indicate this operator, we shall adopt the convention that
it is implicit in the conditional and the biconditional. Thus in
stating the commutative law for addition we shall write

a+b=>b+a

This always refers to the elements a and b of a particular class
I of numbers. In the strict notation of logic this commutative
law is written

(@).(b).ae .beM Da+b=">+ a,

where the symbol “aef’”’ means “a is a member of M.”” Since
we are taking the universal quantifier always to refer to a
specific class, the initial symbols “(a).(b)”’ may as well be
omitted. The statement

aeM.beM Da+b=b+a

! sf’% for example, Lewis and Langford {7], pp. 213-234; Bennett and
Baylis [4], p. 278.
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may be regarded as a relation of implication between two proper-
ties. It may be true or false, depending on the meaning assigned
to “M” and “+.” This notion of implication is not the same
as any of the notions of material implication, strict implication,
or logical implication. A discussion of these notions is not essen-
tial for our purposes and will be omitted.

Treatises on logic usually include a formal analysis of the
relation of class membership, symbolized by ““¢,’”’ and the relation
of identity, symbolized by “ =.”” This formal analysis sets forth
the rules applicable to these relations, but the intuitive under-
standing of the meaning of these notions remains fundamental for
reasoning. Some writers on mathematics do not use the symbol
“ =" for identity, but define the meaning of the symbol by means
of postulates. In the present work this symbol will be used only
to indicate the relation of identity, that is, “a = b’’ means that a
and b are symbols standing for the same thing.

3. The Class Calculus.—The meaning of the notions of a class
and of class membership will be taken as commonly understood.
These notions are fundamental in logic and mathematics. The
terms ‘“set,” ‘““collection,” “family,” and ‘“aggregate’ will ordi-
narily be understood to be synonymous with “class.” Classes
are frequently defined by means of the properties possessed by
their elements, 7.e., by means of propositional functions. If ¢(z)
denotes a propositional function or statement form involving the
variable z, such a definition of a class may be given the following
form: The class A is defined to consist of all those elements z such
that q(z) is true. The unguarded use of such definitions leads to
paradoxes, as in the case of the following: The class A consists
of all those classes z such that z is not a member of z. We shall
avoid such difficulties by refraining from using the unrestricted
variable, that is, in using the form of definition now being dis-
cussed, we shall restrict the variable z to range over a definite
preassigned class U. The class A defined in this way is then a
well-defined subclass of U, provided the statement form g(z) is
properly constructed. The use of good judgment in determining
when a statement form is acceptable in defining a class seems to
be unavoidable. Thus the class of all £ who are living humuns
and have blue eyes is not well determined for mathematical
purposes, although the property in question is a practically useful
one as an aid to identification. One difficulty lies in drawing the
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boundary line between blue eyes and gray, and another lies in
determining which people are living at any particular instant,
since people are continually being born and dying.

Other methods of defining classes are of course needed and
will be met in the following chapters. For instance, it is usually
admitted that the class of all subelasses of a given class forms a
well-defined class.

Parallel to the operations on statements previously discussed
are certain operations on classes. The sum of two classes A and
Bis a class A + B consisting of those elements which are mem-
bers of 4 or of B. The complement ¢A relative to a “universal”
class U of a subeclass A of U7 consists of those elements of U whidh
are not members of A. If the subclass A is identical with
itself, its complement ¢A cannot have any members. It is con
venient to postulate one definite class, called the null classx
having no members, and to agree that it shall be considered as a
subclass of every class. We shall denote the null class by the
symbol A, or sometimes by 0. Thus if {7 is the universal class
of a given discussion, ¢U” = A. The difference 4 — B of two
classes A and B consists of those members of A which are not
members of B. Such a difference may of course reduce to the
null class. The product AB of A and B consists of those elements
which are members of both A and B. Sums and products of
classes obviously obey the usual commutative and associative
laws of algebra. Moreover, there are two distributive laws:

3:1) AB 4+ C) = AB + AC.
(3:2) A+ BC = (A+ B)(4 + 0).

Care must be taken with the operation of taking the difference,
because it does not obey the usual laws of algebra relating to
subtraction.

The operations of taking sums and products of sets may be
extended in an obvious way to quite arbitrary collections of sets.
Thus if {A.} denotes a collection of classes distinguished by the
different values taken by the index a, the sum of the classes A,
denoted by 2 A,, consists of all elements z such that there exists
an a such that x is a member of 4.. The product, denoted by
[1 A, consists of all elements z that are simultaneously members

of all the classes A,. When the definitions are phrased in this
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way, there is no question of proving commutative or associative
laws.

The Cartesian product P X Q of two classes P and Q consists
of all ordered pairs (p, q) of which the first element p is a member
of P and the second element q is a member of Q.

The relation

A is a subclass of B
is indicated by one of the notations

ACB or B D A.

As previously indicated, therc is a close connection between
the operations on classes and the logical operations on statements.
Let U be a class of elements r, and let P, @, and R consist of
those clements x of U for which the statements p(x), g(z), and
r(x), respectively, are true. In the following symbolic state-
ments we adhere to the convention already mentioned that the
universal quantifier is implicit in the conditional and the bicon-
ditional. If

r(r) ~ p(r) V ¢(x)
is true, then R = P + Q. 1If
r(r) ~ p(r).q(x)
is true, then & = PQ. 1f

r(r) ~ —p(a)
is true, then B = ¢P. If
(3:3) z D p(x)
is true, then P = U. I
3:4) Ars — po)

is true, then cP # A. As was indicated in the preceding section,
the statements (3:3) and (3:4) are the negatives of each other.
This simple principle is an important one and frequently needs to
he applied several times in an indircct proof. If

p(z) D q(=)
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is true, then P C Q. The laws

(3:5) P = P,
(3:6) PcP = A,
3:7) P+cP=1U,
(3:8) c(PQ) = cP + cQ,
(3:9) c(P + Q) = (cP)(cQ),
(3:10) PCQ~cQ CcP,

correspond, respectively, to the laws (2:12), (2:13), (2:14), (2:15),
(2:16), and (2:17) of Sec. 2. .

The notion of a class of counters is fundamental for mathe-
matics and may be set up formally in the following way. Lett
null class be denoted by 0, the class whose sole clement is 0 b
{0}, the class whose sole element is {0} by {{0}}, and so on. Thé\
counter class C is the class [0, {0}, {{O}}, .. .]. It may be
defined as the product of all classes B having the following two
properties:

(i) The null set 0 is a member of B;

(ii) If a is a member of B, the class {a}, whose sole element is
a, is also a member of B.

The existence of a class B having the properties (i) and (ii) is an
assumption, called the axiom of infinity. The counter class C .
has a number of familiar properties which will be discussed in
Chap. II. The elements of ' may be considered as representing
the natural numbers. A satisfactory definition of the natural
numbers seems to be as elusive as a definition of space or time.
We can however readily set down the laws according to which
we use the natural numbers, just as we set down rules for measur-
ing space and {ime.

At this point mention should be made of a logical assumption,
known as the “axiom of Zermelo,” the ‘““axiom of choice,” or the
“multiplicative axiom,” which enters into many mathematical
proofs. One form of its statement is as follows:

For every family of nonnull classes A., no two of which have
an element in common, there is a class B which has exactly one
element in common with each class 4..

A few parts of analysis have been reconstructed by some writers
80 as to avoid the use of this assumption. For many proofs
it is sufficient to assume its validity when only a denumerable
infinity of classes A, are considered.
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4. Relations and Functions.—There are many instances of
relations occurring in mathematics. An important example is
the order relation between real numbers, denoted by ““ <.” If
the class of real numbers is denoted by R, then < is a relation on
RR. 1t is called a ‘“binary’’ relation because it involves pairs
of elements. Just as a property may be regarded as consisting
of the class of elements having that property, so a relation may
be regarded as consisting of the class of ordered pairs for which
the relation holds true. Thus the relation < between real num-
bers consists of the points in the zy-plane lying above the line
z = y. In general a binary relation on PQ is a subset of the
Cartesian product P X Q.

A ternary relation consists of a class of ordered triples of ele-
ments. An example is the geometric relation of collinearity.
This relation has properties of symmetry which mean that the
order of the elements is not significant. A ternary relation on
PQR may be regarded as a binary relation on SR, where S is the
Cartesian product P X Q.

If we admit to consideration multiple-valued functions, as it
is frequently convenient to do, a function is nothing more nor
less than a relation. The only difference is in the notation,
terminology, and emphasis. For example, a relation on PQ may
be written in the functional notation as simply

(f(p)|p in P),

where it is understood that f(p) stands for the set of all the ele-
ments in @ to which p bears the given relation. If P and @ both
consist of all the real numbers and the relation is <, then f(p)
is the set of all numbers ¢ > p. The subset P, of P consisting
of all those elements p for which f(p) # A is called the domain

of the function f. The range of f is the set Qo = 2 f(p). When

the set f(p) is singular or null for every p, the function f is said
to be single-valued. The inverse function f~* of f is the relation
obtained by reversing the order in the pairs for f. Thus the
domain of f-! is the range of f, and vice versa. For example,
if for each p, f(p) is the set of all numbers ¢ > p, then f~*(g) is
the set of all numbers p < g. If f(p) = sin p, where the domain
is the set of all real numbers, then the range is the interval
—1 £ ¢ < 1, while, for the inverse function sin™* g, the domain
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is the interval —1 < ¢ £ 1 and the range is the set of all real
numbers. When both f and f~! are single-valued, the function
establishes a one-to-one correspondence between P and Qo. A
single-valued function having domain P and range contained in
Q is frequently referred to as “‘a function on P to @.”

b. Résumé of the Symbols for Logical Connectives.—The fol-
lowing list of logical symbols and their readings will be useful
for reference:

or
and

not

only if, if . . . then . . .
if and only if

is defined to mean

there exists

there exists uniquely

such that

is a member of

is a subset of (between classes).

N Ywuwy 2y

The reader has no doubt observed that in the more complex
logical statements, brackets are frequently needed. In most cir-
cumstances it is desirable to replace the brackets by a system of
dots, for greater ease in reading and writing the notation. The
more inclusive brackets are indicated by the larger number of
dots. The symbols D and ~ will always be accompanied by
dots on both sides. The same will be true for the symbol =
except when it is used in defining the symbol for an entity or a
class. The symbol » will ordinarily be accompanied by dots on
the right only. The symbols O, ~, =, and V are regarded as
superior to the symbol > having the same or a fewer number of
dots, while “‘and,” which is symbolized by dots only, is inferior
to all other symbols accompanied by the same or a greater num-
ber of dots. A few examples will make the usage clear. Thus
if R denotes the class of real numbers, the statement

JysryeR.y2 < z

is interpreted to mean “there exists y such that [y is in R and
¥* <z].” The statement as a whole expresses a property of the
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element z. It may form a part of a more complex statement,
such as the following:
(5:1) wa:zeR :3ys»yeR . y2 <z :D:2R-D- 1 > —2%

Here the universal quantifier is understood to apply to each of
the variables r and 2, and the class R over which they range is
explicitly indicated. The statement (5:1) written out explicitly
with brackets reads: “for every z, (if {z is in R and there exists
y such that [y is in R and y? < 7]} then {for every z [if zisin R
then z > —2?]}).” T1f all the letters are understood to stand

for real numbers, the statement (5:1) may be compressed as
follows:

(5:2) zaJysry2 <zx: Dz Dz > —22

This may be read as follows: “if z is such that there exists y
such that y? < z, then for every 2z, z > —22”” The same mean-
ing may also be conveyed with a different construction, as
follows:

(5:3) zz:D:Ayr i<z x> —22

If f(x) is a real-valued function of the real variable z, the defini-
tion of the property of continuity of f at a point b may be written
as follows, if P is used to denote the subclass of R consisting of
the positive numbers:

(5:4) eeP :D:3d3:deP :2eR. |t — b] < d-D-|f(x) — fb)| <e.
The dots are used to indicate the following bracketing:

eeP D {3d s [deP.{[zeR. [¢ — b| < d] D |flx) — J(b)| < ell}.
The negative of the statement (5:4) is
(5:5) Bes:ceP :deP - D Az > zeR. |z — b < d. |f(z) — fb)| L e.
The statement (5:4) is ordinarily abbreviated as follows:
(56) €>0:D:3d>05:|x—bl <d-D-|fx) —fb)] <e.

EXERCISES

Write the negative of each of the following statements in a
form in which no logical connective appears on the right of a
symbol for negation. The symbols z, y, and z are understoed
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to stand for numbers of a class M for which an operation of
multiplication and an order relation are defined.

z-D-3Ay <=z

.Y DY = Y.

.y D 3Jerzz=y.
Arsiy-Dxy = 2.
dzsizy =2 Dz =2Vy==2a
z#Ey-Dz<yVy<uz
z<y- D Arr<z.2<y.

.

NN~

*6. Remarks on Various Bases for Logic.—In the precedin
sections occasional hints have heen given of the problems
modern logic. There is no general agreement on the best solu:
tion for these problems. In fact mathematical logic is a field inj
which controversy is still both possible and profitable.

Some of the problems are raised by the paradoxes that occur
in the general theory of classes and of propositions. These para-
doxes arise from the consideration of unrestricted variables, the
universal class, stalements that refer to themselves, and classes
that are members of themselves. It seems clear that a statement
that refers to itself is not a sensible statement, and so should be-
excluded from discourse. Also the members of a class must be
themselves well-determined before the class containing them as
members can be specified, so that it does not make sense to speak
of a class that is a member of itself. When any given class of
entities is presented for consideration, it is thereupon possible to
conceive of a new entity not present in the given class. This
ability of the human mind continually to create new concepts
indicates that the concept of a universal class containing all
entities is not a useful one. In any particular theory, mathe-
matics deals with fixed classes, and the results have been satis-
factory to most people.

Many workers in logic would differ from the “ common-sense”
point of view expressed above. For example, Quine (see [3],
pages 163-166) seems to prefer the following criteria of accept-
ability of a system of logic: (1) it should preserve the unrestricted
variable and the universal class; (2) it should be as simple and
general as possible while still containing rules that prevent
paradoxes from entering the system. Although Quine’s rules in
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[3] are not sufficient to keep out paradoxes, they do prevent some
entities from being members of classes. Moreover, they seem
to make the meaning of the notion of class membership somewhat
different from that ordinarily assigned to it. Russell proposed
a theory of types as a means of keeping out the paradoxes. His
theory has been widely discussed but has not been found uni-
versally acceptable.

The intuitionist school, led by Brouwer and Weyl, maintains
that many of the processes of reasoning commonly used by
mathematicians are lacking in justification. For example, it is
admitted that one can conceive of as many natural numbers as
one wishes and that consideration of these numbers is justifiable.
But objection is raised to the consideration of the class of all
conceivable or possible natural numbers as a definite closed sys-
tem. (See Weyl [11], pages 246-249.) Objection is also raised
to the use of infinite logical sums and products and to the con-
sideration of the class of all subclasses of a given infinite class.
These concepts are fundamental for the construction of the
continuum of real numbers, and so for much of modern mathe-
matics. Thus they have at least a pragmatic justification. But
for the intuitionists their logical justification is lacking.

An explicit axiomatic basis for the theory of classes as com-
monly used by mathematicians was formulated by Zermelo (see
[12]; also Fraenkel [9], Chap. 5, pages 268f.; Quine [3], pages
163-166). In this basis there is no fixed universal class. The
use of infinite classes and of infinite processes is justified by the
pragmatic criterion that these concepts have proved useful in
exploring and understanding the world of thought and also the
world of sense. It is nevertheless interesting and valuable to see
what can be done with a more cautious procedure and a more
critical point of view.

REFERENCES

. Tarski, Introduction to Logic, 1941.

Quine, Elementary Logic, 1941.

. Quine, Mathematical Logic, 1940.

. Bennett and Baylis, Formal Logic, 1939.

. Whitehead and Russell, Principia Mathematica.

Russell, Principles of Mathematics, 2d Ed., 1937.

. Lewis and Langford, Symbolic Logic, 1932.

Hilbert und Ackermann, Grundziige der theoretischen Logik, 2d ¥d., 1938.

BN G AW~



16 INTRODUCTION [CrAr. T

9. Fraenkel, Einlestung in die Mengenlehre, 3d Ed., 1928,

10. Brouwer, “Intuitionism and Formalism,” Bulletin of the American
Mathematical Society, Vol. 20 (1913), pp. 81-96.

11. Weyl, “Consistency in Mathematics,” The Rice Institute Pamphlet,
Vol. 16 (1929), pp. 245-265.

12. Zermelo, “Grundlagen der Mengenlehre,” Mathematische Annalen,
Vol. 65 (1908), pp. 261-281.

Tarski [1] and Quine [2] give useful introductions to the ideas and methods
of modern logic. Although Quine’s treatise [3] involves a contradiction, its
first three chapters form an extremely clear and acceptable textbook on the
subjects they cover. Much space in Bennett and Baylis [4] is taken up with
a discussion of classical logic and with ingenious excreises in deductian.
However, this work gives a fairly good exposition of the idess and methods
of modern logic in its latter part. Whitchead and Russell's Principia [‘{)]
is a monumental work, intended to exhibit how the various branches df
mathematics may be built up out of purely logical notions. Russell’s
Principles [6] is an earlier work. The reader should note in the introduction
to its second edition the author’s outline of how his stand on various prob-
lems of logic has changed.  The system of striet implication is explained at
length in Lewis and Langford [7}, and the formalist point of view in logie is
expounded in Hilbert and Ackermann [8]. Quine [3] gives a useful bibli-
ography on logic including a reference to the more complete bibliography by
Church.



CHAPTER 11
THE REAL NUMBER SYSTEM

1. Introduction.—In this chapter we shall show how the real
number system may be constructed and its properties proved on
the basis of assumed properties characterizing the system of
natural numbers (positive integers). The process used in the
following pages is not the only one that may be followed in
constructing the real number system. Other methods are
explained in the references given at the end of the chapter. The
properties of the real number system proved in Secs. 2 to 9 are
summarized in Sec. 9. These properties form a categorical set,
in the sense that any two systems that satisfy them are simply
isomorphic. For mathematical purposes, then, the real number
system is simply a system having the properties set forth in
Sec. 9. The reader who so desires may omit most of Sccs. 2 to 8,
since the properties of Sec. 9 form a logical basis for all the
remainder of the theory. In Secs. 2 to 8 we gain assurance of
the existence of the real number system, since most of us are
satisfied with the abstraction we call a natural number, and with
the properties of the natural numbers listed in Sec. 2. Moreover
in the process we discover the logical relationship of the various
systems: natural numbers, fractions, and real numbers.

As the notion of simple isomorphism occurs frequently in this
chapter, we define it here for several types of systems. Let IN
and 9 be two classes of elements, and let s be a function on M
to M, f be a function on MM to M, and < be a relation on IMIM,
while &, /, and <’ denote corresponding functions and a relation
for . Then (a) (WM, s), (b) (WM, ), (¢) (M, <) are, respectively,
simply isomorphic to (a) (I, &), (b) (W, 1), (¢) (P, <’) in case
there is for each case a one-to-one correspondence between I
and P such that (a) s(m) corresponds to s'(m’), (b) f(m, n)
corresponds to f’(m’, n’), (¢) m < n if and only if m’ <’n’, where
m corresponds to m’ and n to n’ under the correspondence appro-
priate to the case in question. A system (I, s, f, <) is simply

17
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isomorphic to a system (9, ¢/, f/, <’) in case the correspondence
can be set up in such a way that the three conditions hold simul-
taneously. This indicates how simple isomorphism is defined
for other types of systems.

2. The Natural Numbers.—We assume the existence of a
system (M, s), where M is a class of elements m, n, . . . , and
s(m) may be called the successor of m, having the following
properties:

P1. sis a function on M to M; that is, to each m in M cor-
responds a uniquely determined element s(m) inj M.

P2. Amgs:m - D s(m) £ my; that is, there is an elemen& )
in I which is not the successor s(m) of an element of\ IN.
If we let s, denote the set of all functional values s\:n)
corresponding to elements m of the set M, this state-
ment may also be written as follows: It — s = A. |

P3. s(m) = s(n) - D+ m = n; that is, there is at most one
element of M having a given element of I as its successor.

P4 Mo C M sDo C Mo MM — sM] = A-D- Mo = M;
that is, if My is a subclass of M which contains the suc-
cessor of each of its elements, and which furthermore
contains an element m, satisfying P2, then I, is the
whole of .

These postulates are essentially due to Peano. The fourth
property is the basis for all proofs by mathematical induction.
The counter class C discussed in Sec. 3 of Chap. I, with s(m)
= {m}, is an example of a system having these properties.

The following three additional properties are immediate con-
sequences of the Peano postulates:

P5. Do C M. Mo = A-D- Mo — s # A; that is, every
nonnull subclass My of M contains at least one element
that is not the successor of an element of M.

P6. The class M — sM contains only one element my.
P7. m-D-m # s(m).

To prove P5, suppose Mo — sMo = A, so that Mo T sMy,
and let My = M — M. Then My O M — sM. By P3, sho
and s, have no elements in common, so that My D sMs.
Hence by P4, I, = M, and Mp = A, which contradicts the
hypothesis. To prove P6, let m, be an element of MM — s, and
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set Mo = {mo} + sM. Then sMy C Mo, s0 that My = M by
P4, and hence m, is the only element of 9% which is not in sii.
To prove P7, let Mo = [all m »>- s(m) = m]. Then M, contains
the element m, described in P2, and s(m) 5= m - D- s(s(m))
# s(m) by P3. Hence s C smo, and M, = I by P4.

It is easily seen that any two systems satisfying P1 to P4 are
simply isomorphie, so that these four postulates form a cate-
gorical set. It may also be proved that P1, P5, and P6 imply
P2, P3, and P4, so that the principle of mathematical induction
may be regarded as a theorem if one so desires.

It is instructive to note examples where one or more of the
preceding properties fails to hold. In each of the following
examples MM = [m] is a class of numbers, and s(m) = m + 1
except where otherwise specified.

A, M =11, 2 3]. P1 fails, since s(3) is not in M.

B. M =1, 2, 3], with s(3) = 1. P2 and P5 fail.

C. M =1[1,2 3], with s(3) = 2. P3 and P5 fail.

D. M =1[1,2, 3], with s(3) = 3. P3, P5, and P7 fail.

E M=[,23, ,"‘,i,%,---]. P4 and P6 fail.

F..M=104 1, 2 3, - <], with s(3) = 2. P3, P4, and
P6 fail.

In a system (I, s) having the properties P1 to P4, operations
of addition and multiplication and a relation of order may be
defined. We proceed first to define addition by requiring it to
satisfy the following condition:

(2:1) p.m-D p+me=s(p).p+ s(m) =s(p + m).
It will be noted that with this definition of addition, the element
myo behaves as 1, whereas in the counter class C the first element
is the null class 0. In succeeding sections it is convenient to
defer the introduction of zero as long as possible.

The operation of addition has the following properties:

M1. + is on MM to M; that is, for each p and m in M there
is a uniquely determined element p + m in IR.

M2. <+ is associative; that is, m.n.p-D-(m+n) + p
=m + (n + p).

M3. + is commutative; thatis, m.p- D m+p =p + m.

M4. m.p-D-p=m+op

M5. m#p:D:3qarm+g=p-V-3nsrm=p+n
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M6. m+n=m-+ p-D-n = p; that is, the result of sub-
traction is unique.

To prove the uniqueness in M1, suppose + and @ are opera-
tions satisfying (2:1), and for a fixed p, let Mo = [all m> p + m
= p ® m]. Then mo is in Mo and, if m is in Mo, p + s(m)
=s(p+m) =s(p ®m) =p & s(m), so that s(m) is in M.
Thus Do = M by P4. To show the existence of an operation
+ bhaving the property (2:1), let M, denote the class of all ele-
ments p for which there exists an operation + such that p + Mo
= §(p), and p + s(m) = s(p + m) for every m. To show mo is
in M we may take mo + m = s(m). Thenme 4 s(m) = s(s{m))
= s(mo + m). If pisin My, we may set s(p) + m = s(p +'m).
Then s(p) + mo = s(p + mo) = s(s(p)), s(p) + s(m) = s(p, +
s(m)) = s(s(p + m)) = s(s(p) + m). Hence s(p) is also \in
M, and My = M by P4.  Note that in the course of proving M1
we have proved that

(2:2) pm-D-s(p) +m=p+ s(m).

To prove the associative law M2, let m and n be fixed and let

=fall p>m+n)+p=m+ (n+p)l. Then my is in

Mo since (m + n) + mo = s(m +n) =m + s(n) = m + (n +

mo). If pis in Mo, (m + n) + s(p) = s((m + n) + p) = s(m

+m+p)=m+sn+p) =m+ (n+ s(p)). Thus MW =
M by P4.

The proof of the commutative law M3 requires a double appli-
cation of P4. We first prove by use of (2:2) that the class
M, =[all m> p+ m =m+ p] has the property that sI,
CM,. Next, it is obvious that M., contains m,, so that Den,
= M by P4, Thus m, is in every IM,, and M, = I by another
application of P4.

To prove M4, let My = [all ps- p # m + p). Since my = s(m)
= m -+ mo, mo is in MWo. By P3, sWM C My, and thus My = M
by P4.

In considering the property M5, we shall let p be a fixed ele-
ment of M, and set M; = {p}, M. = [all m>: 3g> m + ¢ = p],

=[allms:FAnsm=p+n], Moo= P+ M+ Ms. If p
= Mo, Mo is in My, and if p £ mo, p = 8(q) = ¢ + Mo = Mo + ¢
8o that moisin Ms.  If m is in M, then s(m) = p + mo, so that
s(m) isin Ms. If misin M, and g = my, then s(m) is in My, but
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if ¢ % mo, g =23(q1), p=m+ s(q:) = s(m) + g1 by (2:2) and
8(m) is in M,. Finally, if m is in M5, s(m) = s(p +n) = p
+ s(n) and s(m) is in Ms. Thus sPo C Mo and Mo = M by
P4. In conclusion we note that no two of the classes I, M,, M
can have an element in common, by virtue of M2 and M4.

To prove M6 we may use an indirect proof. Suppose n = p,
m+n=m++ p. By M5, we may suppose p = n + q. Then
m+n=m+4+(n+gq) = (m+n)+q by M2, but this con-
tradicts M4.

To define a relation of order in the class M we choose the fol-
lowing:

(2:3) m<p-=-3Ag>m+q = p.
The next four properties characterize what is called a linear order.

M7. < is on IMM; that is, for every pair m and p of ele-
ments of I it is determined whether m < p or not.
M8. < is transitive;thatis, m <n.n <p-D-m < p.
M9. m < mis true for no element m.
M10. m#p- DO m<pVp<m.

In the verification of these properties it will be noted that M8
depends on M2, M9 on M4 and M3, and M10 on M5. For a
subclass M of M we shall use the notation p < Py to mean
that p < m for every m of MM,. The relations <, >, = are
defined in the customary way in terms of < and then extended
to relations between elements and subclasses. The order just
defined in the class of natural numbers has the following addi-
tional property:

Mil, G CM- P #A-D-Fpin MWy p < M.

An ordered class having the property M11 is said to be well-
ordered. To prove M11, let M, = [all m < INy]. With the help
of M8 and M9 it can be shown that m in I, - D - s(m) not in M.
The element mo is in M; and, if sM; C M2, we would have
M, = M, by P4. Hence Ip in M, >- s(p) not in IM,. But pnot
in M-Dp<PM-D-s(p) <M. As this contradicts the
defining property of p, we must have p in ..

We are now in a position to make a simple proof of a general
theorem justifying definition of functions on It by recursion.
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TreoreM 1. Let (I, s) have the properties P1 to P4, and let
be an arbitrary class, t a function on & to &, and ko a fized element
of R. Then there is a unique funciion f on M to ® such that
f(mo) = ko, and f(s(m)) = t(f(m)) for every m in M.

Proof—Tor convenience, let M» = [all p < m]. The element
my is in every M, since if m = mo, m = s(p) = p + mo. From
this we readily find that ¢ < mif and only if s(¢) < m. We shall
say that an element m has the property E(f) in case f is a function
on Mn to R, f(me) = ko, and ¢ < m -~ f(s(g)) = t(f(g)). Now
let m have the property E(f), let n have the property H(g),
and suppose m = n. Let Mo = [all p = m> f(p) = g(p)] +
(M — M,). Then it is easily seen that mo is in M, and\that
sMo C My, so that Mo = M. Hence f and g are equal on {M.,.
Now let ¢ consist of all elements m for which there exis't_,s a
function f,, with which m has the property E(f.). It is obvipus
that moisin Mi.  For each m in My, set f* = f,, on M, fx(s(m))
= {(fu(m)). Then s(m) has the property E(f*), so that st
C My, and hence M; = M. Since for each m, f. is already
known to be uniquely determined, we obtain the desired function
f by setting f(m) = fu(m).

CoroLLARY. If h is a function on MK lo K, then there is a
unique function g on M lo & such that g(my) = ko, and g(s(m))
= h(m, g(m)) for every m in M.

Proof —Let & = MR, Lo = (mo, ko), t(m, k) = (s(m), h(m, k)).
Then by the theorem there is a unique function f on I to ¥
such that f(me) = ly = (mo, ko) and f(s(m)) = t(f(m)) for every
m. Let f(m) = (u(m), g(m)). Then u(me) = mo, g(mo) = ky,
and if p(m) = m, f(s(m)) = (s(m), h(m, g(m))), so that u(s(m))
= s(m), g(s(m)) = h(m, g(m)), and thus the desired result
follows by P4.

The next theorem justifies a property sometimes used, which
is apparently stronger than P4.

TurorEeM 2. Let the subclass Mo of M contain my, and contain
s(m) whenever Mw C Mo.  Then Mo = M.

Proof —Let Mx = [all m > M, C Mo]. Then moisin M, s
C My, so that M« = M by P4. But Mx C Mo C M, so that
Mo = M.

We define multiplication in I as follows: ¢ X mo = ¢, g X s(m)
=¢ X m+g¢. Then it is a simple matter to verifv the follow-
ing additional properties of the system (M, s, +, X, <).
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M12. X is on MM to M.

M13. X is distributive with respect to +; that is, m.p.q
D m+p Xg=mXqg+pXyg

M14. X is commutative.

M15. X is associative.

M16. mXn=mXp-Dn=np.

M17. m.n.p:D:m<n-~m+p<n-+np.

Mi8. m.n.p:Dm<n-~mXp<nXnp.

The property M12 follows at once from Theorem 1, with
& =M, ko = ¢, and t(k) = k + ¢, and M13 is readily proved by
induction, using the associative and commutative laws for +.
We obtain M14 with the help of M13 and two applications of P4.
Note that by virtue of the commutative law it is only necessary
to prove the distributive law in the form stated. The property
M15 is proved in similar fashion with the help of M13 and M14.
An indirect proof similar to the proof of M6 suffices for M16,
and M17 and M18 also follow easily from the definitions and the
preceding properties.

An an example that falls under the Corollary of Theorem 1,
we note that g(m) = m!if & = M, ko = my, h(m, k) = s(m) X k.

In concluding this section we note the following result on
isomorphism:

TaEOREM 3. If (M, 8) and (M, §') arc two systems satisfying
the postulates P1 to P4, then the systems (M, s, +, X, <) and
W, ¢, +', X', <’) are simply isomorphic. Moreover, the cor-
respondence is uniquely determined, and m, corresponds to m,.

This result may be verified by first proving the isomorphism
of the simpler systems (M, s) and (P, &') and then applying
Theorem 1 with the definitions of +, X, <.

8. Groups and Semigroups.—A group is a system (§, *) having
the following properties:

Gl. *is on GO to ®; that is, to each pair of clements a,
b of ® there corresponds a uniquely determined element
a*bof @

G2. a.b.c-D-(a*b)*xc =a=*(b*c); that is, the opera-
tion * is associative.

G3. a.b*D-3csraxc=0

G3.. a.b*D-3ds»d*a=0D.



24 THE REAL NUMBER SYSTEM [Crap. II

We shall be interested in the two cases when the operation * is,
respectively, addition and multiplication. For the present, the
operation * should be thought of purely abstractly.

Every group has also the following properties:

G4. Fus:a-D-a*u = u*a = a;thatis, there is a unique
unit element usuch that for every element ¢ in ®,a * v =
u*a = aq.

G5. D-3Fladsra*da=a%a=u

G6. a*c=ax*xd-D-c=4d.

G6,. c*a=d*a-D-c=d.

It is easily seen that the properties G1, G2, G4, and G5 impl}x G3,
so that they might be used as an alternative definition of a gr(&up.
A system having properties G1, G2, and GG is called a semigroup.
A group or semigroup having also the following property Ghis
called commutative or Abelian.

G7. a.b-D-a*b=0%a.

It is evident from the properties M1, M2, M3, and M6 of
Sec. 2 that the system (M, 4) forms a commutative semigroup.
The system (I, X) also forms a commutative semigroup.

EXERCISE

Let @, = [all positive even integers],
®, = [all positive odd integers],
®; = [all positive and negative even integers and zero],
®, = [all positive and negative odd integers].

Determine which of these classes, with the operation of addition
or with the operation of multiplication, forms a group or a
semigroup.

4. The Embedding of a Semigroup in a Group.—A funda-
mental process is that of enlarging a commutative semigroup so
as to obtain a group. We assume that (O, *) is a system having
the properties G1, G2, G6, and G7. First consider the class $
of all pairs (a, a’) of elements of ®.

We introduce an equivalence relation < in the class , defined
by the formula (g, a’) = (b, b') *=-a*b’ = @’ *b. By means
of the properties G1, G2, G6, and G7 it is easy to verify that the
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relation = ig reflexive, i.e., always (a, a’) = (a, ') ; symmetric,
e, (g, a’) = (b, b')-D- (b, V') = (a, a’); and transitive, i.e.,
(a,a) = (b, ). (b, ) = (¢, ) D (a,a') = (¢, ¢'). Itisonly
by virtue of having these three properties that the relation = is
properly called an ‘‘equivalence relation.” This equivalence
relation divides the class § into mutually exclusive subclasses,
for which we use the notation {a, a’}. The symbol {a, o'}
stands for the class of all pairs (b, b’) which are equivalent to
(a, a’). We denote the class of all {a, a’} by the symbol .
This process of obtaining a class & from a class § by means of
an equivalence relation is sometimes called identification. We
define an operation * in the class I as follows: {a, o’} * {b, b’}
= {a*b,a’ *b’}]. In order to show that this operation has the
property G1, we need only verify that (a, a’) = (c, ¢’) . (b, V)
= (d, d) - D-(axb, a'*b") = (c*d, ¢’ *d’). Properties G2
and G7 (the associative and commutative laws) are obvious.
To verify property G3 we note that when {a, o'} and {b, b’} are
given, {a, a’} * {a’ *b, a * b’} = {b, b’}. Thus we have proved
that the system (3J, *) constitutes a commutative group.

The system (3, *) is an enlargement of the system (§®, *)
in the sense that it contains a subsystem (Jc, *) which is simply
isomorphic to ((, *). To each element a of ® corresponds the
element {a*b, b} of J, and the correspondence so set up is
one-to-one by G6 and G7. 1t is also casy to verify that a*¢
corresponds to {a * b, b} * {c * b, b}, and that each class {a * b, b}
consists only of pairs of the form (a *d, d). The following
theorem shows that the extension (3, *) of the system (@, *)
which has been cobtained is, in the appropriate sense, the mini-
mum extension that forms a group.

Tueonrem 4. Let (&, *) be a commutative semigroup, (2, *) a
commutative group, and (%a, *) a subsystem of (R, *) which is
stmply isomorphic to (&, *). Then there is a subsystem (&;, *)
of (¥, *) which contains (R, *) and ts simply tsomorphic to the
extension (3, *) of (®, *) to form a group.

To prove this, let the elements of  be denoted by capital
letters, and let A, A’, B, and B’ be the elements of £; correspond-
ing to a, @/, b, and b, respectively. To each element {a, a'}
of & corresponds a unique element C of & by means of the equation
A = A'=(, since a * b’ = a’ *+b implies that 4 * B’ = A’ * B,
A'«C*B' = A'+ B, and finally C* B’ = B. The class &
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consists of all the elements C obtained in this way. It is easily
verified that two distinct elements {a, a’} and {b, b’} of & cannot
correspond to the same element C of & and that the correspond-
ence is preserved under the operation *. Finally, {a*b, b}
corresponds to 4, so that ¢e C &.

6. The Positive Rational Numbers.—The second step in the
historical development of the concept of number was the intro-
duction of fractions. In this section we consider a logical basis
for this step. The starting point is the algebraic system (I, s,
+, X, <) of the natural numbers, having the properties P1
to P4 and M1 to M18. We now apply the process of % 4
to the semigroup (M, X) to form a group (F, X), whose ele
f have the form {m, m’}. Thus each fraction f consists of a dla,ss
of pairs of natural numbers.

The next step is to define the operatlon of addition for ﬁhe
system of fractions. As is customary in algebra, the symbol
X for multiplication is omitted herc and in the sequel where no
ambiguity can arise. It is easily verified that if (m, m') = (n, n’)
and (p, p') = (¢, ¢), then (mp’ + m'p, m'p’) = (ng" + n'q,
n'q’). From this it follows that, if f = {m, m’}, g = {p, p}, the
definition

f+g={mp' + m'p, m'p'}
vields an operation of addition with the property M1, that is,

+ is a function on FF to §.
The system (g, +, X) has the following properties:

F1. (§, +) forms a commutative semigroup.

F2. (g, X) forms a commutative group.

F3. X is distributive with respect to 4.

F4, fs£g-DO-3haf=g+hVi+h=gyg

F5. There is a unique subset Fn of § such that the system
(§m, +, X) is simply isomorphic with the system (I,
4+, X) of Sec. 2. Moreover, the correspondence between
MM and Fum is uniquely determined. The units for multi-
plication in the two systems must correspond.

F6. finF-D-3gin Fu. Ihin Fu > fg = h.

To prove property F4, let f = {m, m'}, g = {n, n’}. Then
mn’ % m'n. By M5, we may suppose for definiteness that
mn’ + p = m'n, where p is properly chosen. It follows that
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{m, m} 4+ {p, m'n'} = {n, n’}. The subset Fu in F5 consists
of those elements f,. of the form {m, mo}. It is worth remarking
that the property F5 follows logically from the properties F1 to
F3 without reference to the definition of the elements of the class
&, provided we assume that §§ has at least two members. To
show this, we define §u to be the logical product of all the sub-
classes Fo of § having the property that $, contains the unit
for multiplication, which we denote by the usual notation 1, and
contains f 4 1 whenever it contains f. To prove F6, we note
that if f = {m, m’}, we may take g = {m/, mo}, h = {m, m,}.

We say that f < g in case 3h s> f + h = g. This is formally
the same as the corresponding definition for order in the class M.
Iff={mm}, g={nn},f<g:-~ mn <m'n The follow-
ing additional properties are logical consequences of F1 to F6
and this definition of order.

F7. (§, <) forms a linearly ordered set.
F8 f.g.h:D:f<g~f+h<g+h
F9. f.g.h:D:f<g-~fh < gh.

F10. f<g-D-3h>»f<h<y.

Fi11. f.g-D-3hin Fu > f < gh.

To verify F7, we have to show that the properties M7 to M10
of Seec. 2 hold for the system (§, <). M7 and M8 are immedi-
ate, and M10 follows from F4. If f and h are such that

(5:1) f+h=/

then f + g + h = f + g for every fraction g, and g + h = g by
the uniqueness of subtraction (F1 and G6). If we multiply
(5:1) by h—'g, we have fh~'g + g = fh~'g, and hence h + g = h
= g, and the class {§ reduces to the single element . But this
is impossible by F5. This proves that f < f cannot occur.

Property F10 expresses the fact that the class § is dense with
respect to the relation <. To prove it, let f+e =g, e = 2a,
where 2=14+1. Then f<f+4+a<f+ 2a =g Property
F11 is usually called the Archimedean property. It is easily
derived from F6 for, if fof = fi, g.g = g1, where fy, fs, g1, g2 are in
Fm, we may take h = gaof1 + ga.

6. Linearly Ordered Sets.—A linearly ordered set is a system
(2, <) with the properties:
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01. < is a relation on Q.

02. < is transitive.

03. v < vis true for no clement » of Q.
04. vx#w-Dv<wVw<uo.

These properties are identical with the properties M7 to M10
of Sec. 2. For convenience we shall as usual use the symbol
w > v to mean the same thing asv < w. The relation > is dual
to the relation <. The system (2, <) is said to be dense in case
it has the additional property

05. v<w-D-drrv<z<w

An element z of @ is a lower bound of a subclass K of € in
case £ £ v for every v in K. For this relationship we use the
notation z < K. The definition of an upper bound is dual, that
is, has < replaced by >. We shall denote by K; the class of all
lower bounds of K, and by K, the class of all upper bounds.
These classes may of course be null. If the class K; has an upper
bound y contained in K, then y is called the greatest lower bound
of K and is denoted by the symbol “g.l.b. K. From the prop-
erties O1 to 03 of a lincarly ordered set, it follows readily that a
set K cannot have more than one greatest lower bound. The
definition of the least upper bound of K, denoted by the symbol
“Lu.b. K, is dual to that of the greatest lower bound. A linearly
ordered set @ is said to have the Dedekind property, or to be
complete, in case every subset K which has a lower bound has a
greatest lower bound in @. We sec at once that a linearly
ordered set 2 is complete if and only if every subset K which has
an upper bound has a least upper bound in €.

7. Dedekind Cuts.—The system (M, <) of the natural num-
bers forms a complete linearly ordered set, but it is not dense. On
the other hand the system (§, <) of fractions is not complete,
although it is dense. It is the purpose of this section to show
how to obtain a complete system from a given dense linearly
ordered system ©, by making use of the *Dedekind cuts’ in Q.

A subset A of Qis said to determine a Dedekind cut in  in
case it has the properties:

D1. A =0.
D2. A =aq.
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D3. aind.a1<a*D-a;in A.
D4. If Lu.b. A exists, it is not in A.

The condition D4 is equivalent to the following:ain 4 - D+ 3a,
in A 5: a1 > a. The set complementary to A will be denoted by
cA, and the partition of @ into the two classes A and cA is the
Dedekind cut determined by A. For example, a Dedekind cut
in the system § of positive fractions is determined by the set
A = [all a < 3], and another cut is determined by the set
B = [all b b? < 3]. Tt is slightly more convenient to work with
only one of the classes A and cA making up a Dedekind cut.
Consequently in the sequel we shall refer to the classes A having
the properties D1 to D4 as the Dedekind cuts in Q.

The class of all cuts in € will be denoted by I'.  The relation <
is defined for the class I' by saying that A < B in case
A C B, that is, A is a subset of B but B is not a subset of 4.

-
When (2, <) is a linearly ordered set, it is casy to show that the
system (I, <) constitutes a complete linearly ordered set
(unless it is vacuous) and that it is nonvacuous and dense when
Q is dense. For example, if L = [A.] is a set of cuts having an
upper bound, the least upper bound of L is the logical sum of the
classes 4,,

lub.L = ZAa.

The greatest lower bound is not always given directly by the
logical product, on account of the requirement D4. Moreover,
it is clear that when @ itself has no lower bound and is dense,
the system (T', <) contains a subsystem (T'q, <) which is simply
isomorphic with (2, <). The elements of I'q are those cuts A
for which Lu.b. A exists in Q.

When the set Q is not dense, it is necessary to omit the property
D4 in order that each element of @ may determine a cut. The
properties D1 and D2 may also be omitted when there is no
question of defining addition and multiplication. Since in Sec. 8
we wish to consider the cuts in the denze system (§, <), which
has no lower bound and no upper bound, and to define addition
and multiplication for them, it is desirable here to assume all
the properties D1 to D4.

8. Construction of the Real Number System.—We shall denote
the complete dense linearly ordered set composed of the cuts
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in the system (§, <) by Q. When we have defined the opera-
tions of addition and multiplication in Q, we shall have obtained
the system of positive real numbers. ILet A and B be two cuts
in §, that is, A and B are two subclasses of § having the proper-
ties D1 to D4 of Sec. 7. Then A + B is defined to be the class C
of all fractions ¢ of the form a + b, where a ranges over 4 and b
ranges over B. Likewise AB is defined to be the class D of all
fractions d of the form ab. Note that here we are not using
A + B and AB to denote the logical sum and product of classes.
It is now possible Lo verify that the system (Q, 4, X, <) has
the following properties. All but the last of these are extenkions
of corresponding properties of the system (g, +, X, <).

Q1. The set Q contains at least two elements.
Q2. (9, +) is a commutative semigroup.
Q3. (L, X) is a commutative group.

Q4. X is distributive with respect to +.

Q5. (Q, <) forms a linearly ordered set.
Q. A<B-~3Cs»A+C=B.

Q7. (L, <) has the Dedekind property.

To prove these properties we need the following lemma, which
follows by an indirect proof from the Archimedean property F11.

Lemma.  For cvery fraction e and every cut A there is a fraction a
in A such that a + ¢ s not in A.

In verifying that the classes A + B and AB are cuts, we find
that the properties D1, D2, and D4 are fairly obvious in both
cases. For D3, we note that if ¢; < a + b then ¢; = a; + by,
where a; = aci/(a +b) <a, by =bei/(@a+b) <b. Also if
dy < ab, then d; = aby, wherea, = di/b < a,b; = b. The com-
mutative and associative laws are obvious. To verify the unique-
ness of subtraction, let A + B = A + C, and suppose that the
class B is a proper subset of (".  If ¢, and ¢, are in ¢ and not in B,
and ¢; = ¢; + ¢, there is by the lemma an element a, of A such
that a; + ¢ is not in A. Then for every a in A and b in B,
a+b<a+ e+ ¢ =a+ ¢z s0 that the number a; + ¢, is
not in 4 4+ B. This contradiction shows that B cannot be a
proper subset of C, and likewise C cannot be a proper subset of B,
so that B = C.

To show that division is always possible is slightly more
troublesome. For given cuts A and C, we shall show that the
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class B of all fractions c¢/a’ where cisin C and o’ isnot in A is a
cut satisfying the equation AB = C. It is plain that B has the
properties D1 to D4. The product AB by definition consists
of all fractions ac/a’, where a is in A, ¢ is in C, and a’ is not in A.
Thus a < a’ and ac/a’ < ¢, so that AB C C. Now let ¢ be an
arbitrary fraction in C. Choose a, in A, ¢;in C, with ¢, equal to
¢+ e;, and set e equal to ase;/c. By the lemma there is a
fraction @ > a; and in A such that a 4+ ¢ is not in A. The
fraction ¢, = aci/(a + €) isobviouslyin AB. Thusitisapparent
that

cac; = cCa + ccze = ¢Ca + C2a161 < €C20 -+ Caq€; = C20Cy,

and hence ¢ < ¢c; and C C AB.

To prove the distributive law we note first that the class
(A + B)C C AC + BC, since the first class consists of all frac-
tions of the form ac + be, while the second consists of all frac-
tions of the form ac; + be,. If ¢y < ¢q, a1 = acy/c: < a, and
soa;isin A. Hence ac; + bcs = aic: + bey, which is a member
of (A + B)C.

For property Q6, we define the class C to be the class of all
fractions of the form b — a’, where ¢’ < b and o’ and b are in B
but not in A. It is easily seen that C determines a cut and that
A 4 C £ B. Toprove B = A+ C, we note first that, if b is
in A, we may choose b, and b, in B but not in 4 so that by < b,
and bs — b; < b, and then set a =b — (by — by). If b is in
B but not in A, there is a fraction by > b and in B, and by the
lemma there is a fraction a in A such that ' =a 4+ b, — b is
not in A. But o’ <by, so a’ is in B, and a 4+ by — @’ =b.
To prove the converse we note that for every ¢ in C there exists
by the lemma a fraction a in A such that a + ¢ is not in A4,
although it must be in B. Hence A < B.

As the final step in the construction of the real number system,
we extend the semigroup (Q, +) to form a group (&, +), accord-
ing to the process outlined in Sec. 4, and then define the operation
of multiplication and the order relation in  as follows. Let the
elements of %, which are classes of equivalent pairs of cuts, be
denoted by Greek letters, and let « = {4, A’}, 8 = {B, B’ }, and
go on. Then by definition af = {AB + A'B’, AB' + A’B},
and o < 8 in case 3(4, A) in a. (B, B') infs» A + B' < A’
+ B. Tt will be necessary of course to verify that the operation
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of multiplication is a single-valued function of the two factors, as
stated in property R3 of Sec. 9.

Let us note that, if 4 = A’ 4 C, and the pairs (4, A’) and
(B, B’) are both members of the same real number «, then
B = B’ 4+ C, and conversely. This shows that there is a one-
to-one correspondence between the numbers C and the numbers
a = {A, A’} for which A > A’. We shall indicate this corre-
spondence symbolically by « =2 C. In the same way there is a
one-to-one correspondence between the numbers C and the
numbers a = {A, A’} for which 4 < A’, which we shall indicate
by a= —C. In case A = A’, we shall write « = 0. This is
obviously the identity clement for addition. We verify a,th;nce
that

aa

D-D-af=CD,
—D-D-af = —CD,
~D-D-af==—CD,
—C.8==—-D-D-af=CD,
0OV E=0-D-af 0.

(8:1)

12112 11 112 1R

R R R R R

These statements show that the operation of multiplication in R
is well-defined. They also show that we could have made the
extension of the system (Q, 4, X) simply by introducing the
artificial clement 0 and the ‘“tagged” elements —C. The
formulas (8:1) would then become the definition of multiplication
in the extended system. In the following proofs it is convenient
to make use of both points of view.

For convenience a sct of properties characterizing the real
number system is collected in Sec. 9. It is easy to verify that
the system we have been constructing has these properties. The
property R2 follows at once from the general theory of Sec. 4.
The first part of R3 has already been verified, and the associative,
commutative, and distributive laws follow immediately fiom the
original definitions of 4+ and X. To verify R4 we recall that
for arbitrary numbers 4 and C there is always a number B
such that AB = C. Then for arbitrary numbers « and v, with
a # 0, we have the following solutions of the equation a8 = v
in the six cases:
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3. am~A vy~ —-(C, 8= —B.
4, a>~—-A,y=0,8x0.

5. a=~ —-A,y=C,8= —B.
6. a~—-A,y=-C,8xB.

The properties R5 and R6 are readily verified using the original
definitions of + and <. We note also that & > 0 if and only
if there is a number C in £ such that « = C, and that « < 0 if
and only if there is a C such that « = —C. Moreover, if a =~ C,
B=D, then a <g~-C < D, and if a = —C, 8 = —D, then
a < f:~D <C. The property R7 is now obvious, and we
verify R8 as follows. If K is a subset of %, and 0 £ K, but
0 # glb. K,then3y > 05 v < K. Hence g.l.b. K exists by the
Dedekind property of Q. On the other hand, if ¥ £ K, and
Jda < 0in K, let K, consist of all clements C =~ —a wherea < 0
and aisin K. Then Co Z Ky, where Cy = —v, and 3C; = Lu.b.
K, by the Dedekind property of Q. Hence —C, =< g.lb. K.

9. Properties Characterizing the Real Number System.—The
real number system (9, +, X, <) is characterized by the follow-
ing properties:

R1. The class R contains at least two elements.

R2. (M, +) is a commutative group.

R3. X is on {N to N, and is associative and commutative,
and distributive with respect to +.

R4. The class % with the unit 0 for addition omitted, and X,

forms a group.

R5. (R, <) forms a linearly ordered set.

R6. a<B8.v Drat+vy<8+n.

R7. a>0.8>0-D-a8>0.

R8. (R, <) has the Dedekind property.

A system having the properties R1 to R4 is called a field, and
a system having the properties R1 to R7 is called an ordered
field. (See, for example, Albert, Modern Higher Algebra, pages
27, 110.) The only ordered ficld with the Dedekind property
is the real number system, in the sense that two systems having
tke properties R1 to R8 are necessarily simply isomorphic.

The real number system has the following additional proper-
ties, which are logically deducible from R1 to R8 without refer-
ence to the method of constructing the real numbers. The
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usual notation 1 is used for the unit element for multiplication,
and we omit the sign X according to custom. Furthermore, we

get || = aif a2 0, |a] = —aif a <O.
R9. a.8:D'aX0=0.a(—8) = —(af) = (—a)p.
(~a)(~B) = of.
R10. 0< 1.

Rll. a>0.8<v "D af < ay.

R12. There is a subset Ry of N such that the system (Rn, +,
X, <) is simply isomorphic to the system (M, +, X, <)
of Sec. 2. FEvery element p of Ny satisfies u > 04 and’
1 is the first element of Ru.

R13. a>0.8>0 D 3uin Ry » pa > 6.

R4, a<B-D:3Jp in Ry.Av in Ry o a<p/v<§V

a < —u/v <B.
R15. a.B-Dla+ B8l = |af + (8] . |a8] = |of|Bl.

To prove R9, we see that, by the distributive law, & = a X 1
=a(l+0)=aXl4+aX0=a+aX0sothata X0 =0.
Next, a(—8) + af = a(—B + 8) = a X 0 = 0, so that a(—8)
= —(aB). Finally, (—a)(—8) + (—aB) = (—a)(—8) + (—a)8
= (—a)(—=B +B) = (—a) X 0 =0, so that (—a)(—8) =

To prove R10, we note that, if 1 =0, then a =a X1 =
a X 0 = 0 for every «, and this contradicts R1. Ilence 1 < 0
V1>0by R5. If 1 <0, then 0 =1+ (—1) < —1 by RS,
and thus 1 = (—1)(—1) > 0 by R7. The property R11 follows
readily from R6 and R7.

To prove R12, let us say that a subclass Ry of R has the prop-
erty (H) in case N, contains 1, and contains a + 1 whenever it
contains a. The subset My is defined as the logical product of
all subclasses R, having the property (H). Thus Ry is the
minimum subclass of % having the property (H). If we let

= [all & in My > @ > 0], we seec at once that R, has the
property (H), by R10 and R6, so that R; = Ryu. Setting
s(a) = a 4+ 1, we see at once that the system (Ru, 8) has the
properties P1 to P4 of Sec. 2, with my = 1. The opcrations of
addition and multiplication defined in that section in terms of the
function s are scen to coincide with the addition and multiplica~
tion of the real number system by virtue of the associative and
commutative laws for addition, and the distributive law.

To prove the Archimedean property R13, we use an indirect
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proof. Suppose every u in Ry satisfies p < 8/c. Then Iy
= Lub. Ry, by R8, and uin Ry p >v — 1. Theny <pu+1
by R6, and this contradicts the definition of v.

The density property R14 can be proved by means of the
Archimedean property. Suppose first 0 = a < 8. Then by
R13, Avin Rus» v —a) >2,and p in Ry - 1)/r L a
< u/v, since every nonnull subset of Ry has a first element, by
property M11 of Sec. 2. From this, p/v S a+1/r<a
+ (8 — a)/2 < B. Next suppose @ < 0. Then from R6, R10,
and R13, Join Ru» 0 <o+ a <o+ 6. By the first case,
Fu.Avro+a<pu/v <o+ B s0that « < (u — av)/v < B by
R6. If it should happen that u — ov = 0, then by the first case,
3.3V 0 < W/ <B.

It is easy to show that an isomorphism between two systems
(M1, +, X, <) and (R, +, X, <) having the properties R1 to
R8 can be set up in one and only one way. In the first place it
is clear that the units for addition in the two systems must
correspond, and likewise the units for multiplication. Conse-
quently the correspondence of the subsets Ry and Rom described
in R12 is determined. If we let R and Ror denote the sets of
positive rational numbers in the two systems, we see that the
correspondence between Rir and Ror is likewise determined. Let
elements of N1r be denoted by a, and let elements of N be denoted
by as. For a given a; > 0in R, let K; = [all a; > a1]. Note
that K, is a subset of Rw. Then by R14, a; = glb. K;. Let
K, be the subset of RN consisting of all the elements a, corre-
sponding to elements a; of K, and let a2 = g.l.b. K, correspond
to a;. Tt is not difficult to verify that this correspondence is
preserved under addition and multiplication. Obviously no
other way of setting up the correspondence would preserve the
order relation. Finally, the correspondence is set up for the
negative real numbers in the obvious way. This process of
establishing the isomorphism between two systems satisfying
the postulates R1 to R8 follows in outline the process we have
selected for constructing the real number system.

10. Additional Properties of the Real Number System.—In
this section we shall use a variety of letters to stand for numbers
and disregard the connotations in use in the preceding sections.
The numbers considered are supposed to lie in an ordered field,
i.e., in a system (R, +, X, <) having the properties R1to R7.
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A sequence (a,) in R is a function that makes correspond to
each positive integer n a uniquely determined number a, in R.
The notion of limit of a sequence is defined as follows:

ima, =1li=:e>0:D:Fn3:n>n D |an — | <e

The significance of this definition is indicated graphically in the
figure, where 7 is plotted along the z-axis, and a, along the y-axis.
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The graph of the function consists of isolated points. All the
points of the graph to the right of the line £ = n, are supposed to
lie between the linesy =l 4+ eand y = | — e. A sequence {a,)
is a Cauchy sequence, or satisfies the Cauchy condition, in case

€e>0:D:Ansm>n.n>n-D lan — a,] <e

THEOREM 5. Every Cauchy sequence 1s bounded.

THEOREM 6. Every sequence having a limil in R is a Cauchy
sequence.

TuEorEM 7. If the ordered field R has the Dedekind property,
every Cauchy sequence (a.) in R has a limit in RN.

Proof.—By Theorem 5, (a.) is bounded, so that we may set
» = lLub.a,form > n,andl = glb.b,. Then3Igs>b, <l +e
Let p be an integer greater than ¢q and greater than the =, of
the Cauchy condition. Thenn >p-D-a.<b, <l + e Also
3Am > psam >b, —e 21— e Then by the Cauchy condition
n>PprD:a 2 am—e>1— 2, and finally we have |a, — I
< 2e.

A Cauchy sequence is sometimes called a regular sequence,
or a convergent sequence. The term convergent sequence is
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sometimes also used to mean one that has a limit. According
to the last two theorems the two usages are equivalent in the real
number system. However, when the numbers used are restricted
to be rational, a Cauchy sequence need not have a limit.

A sequence (a,) is said to be nondecreasing in case n < m
*D" s £ @ It is said to be nonincreasing in case n < m
-D* a, 2 an. A monotonic sequence is one which is either
nondecreasing or nonincreasing.

THEOREM 8. If the ordercd field R is Archimedean, every mono-
tonic bounded sequence ts a Cauchy sequence.

This may be proved by an indirect proof.

TuroreM 9. If the ordered field R has the property that every
nondecreasing bounded sequence has a limil, then R has the Dede-
kind property.

Proof —We first show by an indirect proof that the field is
Archimedean. Suppose there exist positive numbers ¢ and b of
the ficld such that na < b for every integer n. Then the sequence
(na) is increasing and bounded, and so has a limit . By def-
inition of limit, I — na < a for n sufficiently large, so that
I < (n+ 1)a. But it is easily seen that I = na for every =, so
that we have arrived at a contradiction.

Now let K be a set of numbers which is bounded above. Let
@ be a number in K, let b = K, and let ¢; = (@ +b)/2. If
K £ ¢y, set a; = a, by = ¢y; otherwise set a; = ¢5, by = b. This
indicates how to define recursively two sequences (a@.) and (bs).
If a,_; and b._; have been defined, set ¢, = (@n—1 + bn-1)/2. 1f
K = ca, set an = @n_i, by = Ca; Otherwise set a, = ¢, bn = ba-1.
It is clear that the sequence (a.) is nondecreasing and bounded, so
that by hypothesis it has a limit . Since b, — a, = (b — a)/2",
it is easy to see by the Archimedean property that lim (b, — aa)
= 0, and hence ! = lim b,. Also K £ b, for every n, and so
K £ 1. We note also that if [ # lub. K,3e >0 K sl —¢
and from this, 3n» K < aa, but this contradicts the definition
of a,, so that we must have ! = Lu.b. K.

The last two theorems show that, if an ordered field is Archi-
medean and has the property that every Cauchy sequence has
a limit in the field, then the field is complete, i.e., has the Dede-
kind property. Thus there are three possible ways of formulat-
ing the concept of completeness for ordered fields, each of which
has its advantages. It is worth remarking that the notions of
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limit and of Cauchy sequence may be used in situations where the
relation of order and the operations of addition and multiplica-
tion are not defined.

Two sequences (a,) and (b,) are said to be equivalent in case
lim (@, — b.) = 0. This relation is casily seen to be reflexive,
symmetric, and transitive, so that it may be used to divide the
class of all sequences into mutually exclusive subclasses. By
restricting attention to Cauchy sequences of rational numbers,
we may intrcduce the construction of the real number system
due to Cantor. According to Cantor, a real number is defined
to be a maximal class of equivalent Cauchy sequences of ratignal
numbers. It is easy to define addition, multiplication, anci\an
order relation for such classes, and the svstem so set up may \be
shown to have the properties listed in Sec. 9. The correspon\d-
ence between Cauchy sequences of rational numbers and the
Dedekind cuts in the rational number system may be defined
directly.

A sequence (a,) is a decimal sequence in case a, is an integer
(positive or negative), and .41 = an + b./10*, where b, is one
of the numbers 0, 1, 2, . . . , 9. 1t is clear that every decimal
sequence is bounded and nondecreasing and so has a limit in the
rcal number system. A decimal sequence is normal in case
k-D-3n > ks b, # 9. By means of the Archimedean property
it may be proved that every real number is the limit of exactly
one normal decimal sequence. Thus we see that the reul num-
bers might have been defined as the normal decimal sequences.
Of course other bases than ten might have been used for a system
of numeration. In particular the bases two and three are some-
times useful in discussing the properties of certain point sets.

A classis said to be denumerable in case it can be set into one-to-
one correspondence with the class of natural numbers. A class K
is said to be finite in case there exists a natural number m such
that K can be set into one-to-one correspondence with the
set of all natural numbers not greater than m, and K is then
said to have m elements. It is important to note that the
class of all rational numbers is denumerable, while the class
of all real numbers is not. Since the class of even integers
is denumerable, it suffices for the first statement to show that
the class of positive rational numbers is denumerable. We
can, for example, make each positive fraction p/q correspond to
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the integer n = (p + ¢)(p + ¢ — 1)/2 + p. This makes infin-
itely many integers correspond to each positive fraction. By
dropping out all but the first one in each case (obtained by repre-
senting the fraction in its lowest terms), we establish a one-to-one
correspondence of the class of positive rational numbers with a
subclags of the integers. It is easy to see then that the class of
positive rational numbers is denumerable.

To show that the class of all real numbers is not denumerable,
we suppose that (c,) is a sequence containing all the real numbers
and consider the normal decimal representation of each number
¢n. We may readily define a normal decimal sequence whose
digit in the nth decimal place differs from the corresponding
digit of ¢, and thus determine a real number ¢ which does not
oceur in the sequence (c..).

The notions of the last two paragraphs are treated in a more
general setting in Chap. XIIL. See especially Secs. 5, 7, and 8.

REFERENCES

{. Stone, The Theory of Real Functions, 1940, Part 1.

2. Hobson, The Theory of Functions of a Real Varable, 3d Ed., 1927, Vol. 1,
Chap. 1.

3. Pierpont, The Theory of Functions of Real Variables, 1903, Vol. 1, Chap. 1.

4. Veblen and Lennes, Infinitesimal Analyses, 1907, Chap. 1.

3. Holder, Dewe Arithmetik in strenger Begrindung, 1929,

6. Landau, Grundlagen der Analysis, 1930.

7. Stolz und Gmeiner, T'heoretische Arithmetik, 1900-1902.

Stone [1} contains a complete and careful development of the real number
system, using the Cantor process. In this work, equivalence is called
“equality.” Veblen and Lennes [4] s casily readable but brief. It contains
a list of postulates characterizing the real number system. Stolz und
(imeiner [7] contains a rather lengthy and exhaustive discussion of various
topics connected with numbers.



CHAPTER III
POINT SETS

1. Space of ¥ Dimensions.—A point in one-dimensional space
is a real number or one of the ideal elements 4, — . These
two ideal elements + o and — « arc introduced for convenignce
in connection with the theory of limits. We define an otder
relation between them and the real numbers by saying that\for
every real number b, —w < b < 4. There is not a great
deal of use for a definition of the operations of algebra on thése
ideal elements, but they can easily be defined in a way that is
consistent with the theory of limits except for those forms like
0- oo which are commonly called ‘“‘indeterminate” forms.

By the Cartesian product of two classes P and @ is meant the
class of all couples (p, q), of which the first element p is chosen
from P and the second clement g from Q. The Cartesian product
of one-dimensional space by itself gives us a two-dimensional
space, frequently called the number plane. By properly chosen
definitions we obtain from the number plane an ordinary Euclid-
ean plane plus four lines at infinity. The number plane
corresponds to a coordinate system set up in the Euclidean plane.
The four lines at infinity in the number plane are defined in terms
of zy-coordinates by the equationsz = +*,z2 = — w0,y = + o,
y = —oo. By forming the Cartesian product of k classes each
composed of the real numbers and the ideal elements + « and
—w, we obtain the k-dimensional number space of points
(z®, . .., z®) each of whose coordinates z(V is either a real
number or 4+ or —«. When it is not necessary to indicate
the number of dimensions or to consider the individual coordi-
nates, we shall use the abbreviated notation z for the point
(v, . .., %), The definitions and theorems given in this
chapter are equally valid for any finite number of dimensions.
For explicitness and simplicity most of the examples are given in
spaces of one and two dimensions.

The geometric language is used because of its convenience and

40
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suggestiveness. Much of this chapter is devoted to introducing
the terminology of point-set theory and clarifying its meaning
by means of examples. We recall that the terms “class,” “fam-
ily,” and ““aggregate’’ are used as synonyms for the term “‘set.”
In connection with point sets in a number space, the term
“region” will be used as still another synonym.

2. Examples of Point Sets.—The first examples, A to F, are
in one-dimensional space. The notation E,[ ] or E[ ] will
be used to denote the set of all points satisfying the condition
written in the bracket. Occasionally the notation S[ ] is used
to denote the subset of a given point set S which satisfies the
condition written in the bracket.

A. An open interval (a, b) consists of all points x such that
a <z <b, where @ and b are fixed points, 7.c., (a, b)
= EJfa <z < b).

A closed interval [a, b] = EJa < z < b).

. The set of points with positive integral coordinates.

The set of points whose coordinates are the reciprocals of

the positive integers.

. The set of all points with rational coordinates.

. The Cantor discontinuum. This is formed from a closed
interval [a, ] by removing first the middle third, then the
middle thirds of the remaining intervals, and so on indefi-
nitely. It is understood that the intervals removed are
open intervals. The set of points remaining after the
infinite sequence of operations just described is called the
“Cantor discontinuum.” Its properties will be discussed
in more detail in Sec. 4. Its construction may be varied
by replacing the fraction § by some other fraction.

HE Yow

The following examples G to K are in two-dimensional space:

G. An open interval (a,c; bd) = Enla <z < b;c <y <d].
H. A closed interval [a,c; bd] = EJla Sz S b;e Sy £ d].
1. The set of all points on the circumferences of the circles
with centers at (1/2%, 0) and radii respectively 1/27+2 for
n=12....

The set (’>f all points interior to the circles described in I.
The set of points (— «, n), wheren = 1,2, . . . .

. Theset E,[—© <z < +o;2* <y < 2%

R
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M. The set composed of the points for which 0 < z £ 1,
y = sin (1/z), plus the interval —1 =y =1 of the
y-axis.

3. Operations on Aggregates.—Various operations on point
sets will be discussed in this section. These operations are
obviously applicable to aggregates of any nature whatever, as
was indicated in Sec. 3 of Chap. L.

The sum of two sets A and B, denoted by the symbol A + B,
consists of all points = that belong to at least one of the gets
A and B. The product or intersection, denoted by AB, ¢on-
sists of all points « that belong to both sets A and B. These
definitions are obviously extensible at once to collections of any
number (finite or infinite) of sets A.. For such sums ahd

products we may use the ordinary abbreviated notations Z Aq

and [] A, respectively. Since there may not be any points

belonging to both of two arbitrary classes 4 and B, it is con-
venient to speak of the null class, which has no elements what-
ever, and for which one of the notations A or 0 is frequently used.
Thus, using the examples I and J, we may write

IJ = A or IJ = 0.

Two sets whose interscetion is the null set are said to be disjoint.

The difference of two sets, written A — B, consists of all
points z in A but not in B. Obviously the difference of two sets
may also reduce to the null set. A special cagse of a difference
is the complement of a set A, frequently written ¢4, which con-
sists of all points z of space not in the set A. Tt is worth while
to note that the complement of a product of sets is the sum of the
complements of the respective sets and, vice versa, the comple-
ment of a sum is the product of the complements. Thus AB
=¢(cA +¢B). Also A — B = AcB = c¢(cA + B). Thus the
two operations of taking sums and complements may be taken
as fundamental if this is desired. Referring to the examples C,
D, and E, we note that (C + D) — E = C 4+ (D — E).

Associated with each sequence of sets A, are two limiting sets,
frequently called the limit inferior (or the restricted limit) and
the limit superior (or the complete limit) of the sequence, which
may be defined by the respective formulas
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liminf 4y = ) [ 4», limsup Au =[] ) 4.

m n>m m n>m

The limit inferior contains all those points which belong to all
the sets 4, from a certain place on. The limit superior consists
of all those points which belong to infinitely many of the sets 4,.
In case the limit inferior and the limit superior turn out to be the
same set, this set is called the limit of the sequence A,. A
sequence (A.) is called nondecreasing in case A, C A, for
every n, and nonincreasing in case 4, D A, for every n. In
either case it is called monotonic. A monotonic sequence of sets

always has a limit. In the nondecreasing case, lim 4, = z A,

and in the nonincreasing case, lim 4, = [] 4,.®

The following examples in two-dimensional space illustrate
the preceding definitions.

N. The set A, consists of the interior of the circle with center
at (n, 0) which passes through the points (0, 1) and (0, —1).
Then lim A, consists of the points (z, y) in the finite part
of the plane for which z > 0 and the points on the open
segment from (0, 1) to (0, —1).

P. The set A, consists of the interior of the circle with center
at ((—1)"n, 0) which passes through the points (0, 1) and
(0, —1). Then lim inf A, consists of the points on the
open segment from (0, 1) to (0, —1), while lim sup 4, con-
sists of the entire finite part of the plane except for those
points on the y-axis for which |y| = 1.

4. Some Fundamental Definitions and Theorems of Point-
set Theory.—By the e-neighborhood N(b;¢) of a point b = (bV,
., b®) in k-dimensional space is meant the set of all points z,
finite or infinite, such that [z® — b®| < e if b is finite; =@
< —1/eif b = —o0;2® > 1/eif bD = 4o, fori =1, ..,k
It is supposed, of course, that ¢ > 0. A useful consequence
of this definition is that, if a point ¢ is in the neighborhood
N(b; ¢) and d is in N(c; ¢), then d is in N(b; 2¢) provided 2¢? < 1
when b has one or more infinite coordinates. Furthermore,
bs#c-D-3e> 03 NO; N(c; ¢ =0, that is, if b and ¢ are
1Tt should be noted that oceasionally an author will use the symbols
lim inf A, and lim sup 4, with a different meaning.
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distinct points, there is a positive number ¢, such that the neigh-
borhoods N (b; €) and N(c; €) have no points in common.
If 8 is a set of points,

NS; e = z N(b; o).
bin 8
that is, the neighborhood N(S; ¢) consists of all points z that lie
in the e-neighborhood of some point b of S.

A point b is interior to a set S in case e > 05 N(b; ¢) C S,
that is, in casc there exists a neighborhood N(b; €) containing
only points of S. A point b is exterior to S in case de > 0 >
SN (b; €) = 0, that is, in case there is a neighborhood N(8; ¢)
containing no points of 8. A point b is a boundary point dr a
frontier point of S in casc e > 0D N(b; €)S # 0. N(b; €)cS # 0,
that is, in case every neighborhood N (b; €) contains at least one
point in S and at least one point not in S. The set of all the
boundary points of a set S is called the boundary or frontier of S.
It is casy to see that a point is & boundary point of a set if and
only if it is neither an interior point nor an exterior point of the
set. Thus with respeet to a given set S all points of space are
classified into three mutually exclusive classes: interior points,
exterior points, and boundary points. A boundary point of a set
may belong to the set or not.

A set of points having b as an interior point will also be called a
neighborhood of b, and denoted by N (b), when it is not important
to specify the character of the neighborhood. Every neighbor-
hood N (D) contains an eneighborhood N(b; €). Thus the
interior of a circle in the plane constitutes a neighborhood of each
of its points. A deleted neighborhood of b is obtained by striking
out the point b from a neighborhood of b. As in Chap. I, we
shall use the notation {b} for the set consisting of the single
element b.

A point b is an accumulation point or a limit point of a set S
in case € >0-D-N(b; &S — {b} £ 0, that is, in case every
deleted neighborhood of b contains points of S. A point b is an
isolated point of a set S in case de > 03 N(b; €)S = {b}, that is,
in case b belongs to S and there is a neighborhood of b containing
no other point of S.

THEOREM 1. In every neighborhood of an accumulation point
of S there are infinitely many points of S.
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Proof—If z; is a point of S distinct from b, then Je; > 0 5: z;
notin N(b; &). If only a finite number x4, x5, . . . , 2, of points
of 8 distinct from b lic in a neighborhood N (b; €), the smallest
of the numbers €, . . . , €, is a positive number ¢, and N(b; ¢€)
would contain no points of S distinet from b.

The following theorems are left to the reader as exercises.

TuroreM 2. Every interior point of S is an accumulation point
of 8

THEOREM 3. An accumulation point of S is either an interior
point of 8 or a boundary point of S.

TurorEM 4. A boundary point of S is either an accumulation
point of S or an isolated point of S.

The derived set or derivative of a set S, denoted by &', is the
set consisting of all the accumulation points of S. The set
S + &' is frequently called the closure of S and denoted by S.
A set Sis called closed in case it contains all its points of accumu-
lation, 7.c., in case 8’ C S. A set S is called open in case it is
composed entirely of interior points. It is readily seen that
every e-neighborhood N(b; €) 1s an open set.

Tugorkm 5. If S C T, then 8 C T",and § C T.

THroreM 6. The complement of a closed set is open; vice versa,
the complement of an open sct is closed.

Proof —If 8 is closed and b is in the complement of S, then b
is in the complement of 8’, and so there is a neighborhood of b
containing no points of S. If S is open and b is in (¢S)’, then
every neighborhood of b contains points of ¢S, so that b is not
in S.

TuroreM 7. Let (E.) be a family of sels, S = z Eo. P =[] E.
If each E, s closed, the product P is also closed. In case there are
only a finite number of sets E,, the sum S is also closed. If each
E, is open, the sum S s also open. In casc there are only a finite
number of sets Ea, the product P is also open.

Proof —1f each E, is closed, we have P’ C [| E,, C [[ E. = P.
If in addition there are only a finite number of sets E., and b is
not in 2 E., then

a:D:3e > 03 E.N(b;ea) — {b} =0.

Let € be the smallest .. Then SN(b; ¢) — {b} = 0, so that b is
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not in §’. Hence S’ C EEL C EE., = 8. The last part of

the theorem follows from the first part by use of Theorem 6.

TaEOREM 8. The derived sct 8' of an arbitrary set S s closed.
The boundary of S and the closure S of S are also closed sets.

The proof of the last theorem is left to the reader. From it
we see that the closure S of S is the minimum closed set contain-
ing S.

Note that the property of being closed or open or neither
depends on the space in which the point set in questi¢n is
regarded as embedded. Thus, the set C of the examples in %c. 2
is not closed. But, if we had not introduced the pointk at
infinity into the space, the set C would be closed, since it W(§u1d
have no point of accumulation whatever in the space. An oi\)en
interval (a, b) of one-dimensional space is an open set A, but if
the same set A is regarded as a subset of two-dimensional space
then A is no longer open. It is sometimes convenient to intro-
duce the notion of relative closure. A set S is said to be closed
relative to a set T'incase 8'T C 8 C T. Aset Sisopen relative
toaset 7incase S C Tand T — 8 is closed relative to T. The
form of the last definition is justified by Theorem 6.

It should be noted that a closed interval may be represented
as a product of open intervals, and an open interval may be
represented as a sum of closed intervals. Also every set is both
closed and open relative to itself. Ixample D is closed relative
to the open interval (0, 2), and D 4 (—1, 0) is open relative to
D4+ [-2 0]

A set T is said to be dense in a set Sin case S C T". As a
special case, 4 set S is dense-in-itself in case S C 8. Aset Sis
nowhere dense or nondense in case it is dense in no interval.
A set S is perfect in case it is ciosed and dense-in-itself, 7.e., in
case S = §'.

The following theorem is frequently useful:

TaEOREM 9. Every infinite set S in Lhe number space contains
a denumerable subset T such that S C T +-T1". If 8 is dense-in~
itself, then T 18 dense in 8.

Proof —If space is one-dimensional, we fit a net G, of intervals
on it, with end points 7/27, where 7 ranges over the integers from
—2% to 2». Thus each net G, consists of a finite number of
intervals of which the first and the last are the infinite intervals
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(=, —27) and (2", + =), respectively. If space is k-dimen-
sional, the net G, is to consist of the k-dimensional intervals
each of which is the Cartesian product of k intervals chosen from
the one-dimensional net just described. In particular, in two
dimensions, the net G, is composed of intervals with corners
(¢/2~, j/2"), where 7 and j range independently from —22» to 22»
and take also the values —« and + . Such a sequence of
nets is frequently useful.

To obtain the set 7 we select from each interval of each net
G, a point of S, if there is one. Then for each point z in S and
each n, there is an interval 7, of the net G, containing x, and
therefore containing a point of 7. Hence z is in T + T".
From S C T+ 7" we find 8’ C T + T" = T”, and from this
the last statement of the theorem follows.

From the property R14 of Chap. II, Sec. 9, it is easy to see
that the denumerable set @ composed of all points with rational
coordinates is dense on the number space. An alternative proof
for Theorem 9 is obtained by selecting a denumeration (z,) of @,
and then selecting from each set SN (z,.; 1/n) which is not null
a point y,, to obtain the desired subset 7.

A set S is said to be disconnected in case it is the sum of two
disjoint nonnull sets A and B such that neither part contains a
point of accumulation of the other, that is,

AB+ A'B+ AB' = 0.

A set, S is connected in case it is not disconnected. A continuum
is a closed connected set. A set S is convex in case it contains
the line segment joining each pair of its points.

An e-neighborhood of a point b is an example of a convex set.
A convex set is obviously connected. A connected set consisting
of more than one point is dense-in-itself. A continuum is clearly
always a perfect set, except in the degenerate case when it reduces
to a single point. To avoid exceptions, we may agree to call the
null set open, closed, perfect, and connected.

Use is occasionally made in analysis of other definitions of
connectedness than the one given above. A set S is said to be
polygonally connected in case every pair of its points can be
joined by a polygon all of whose points are in 8. A set S is said
to be arcwise connected in case every pair of its points can be
joined by a continuous arc all of whose points are in S. A con-
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tinuous arc may be defined as the set of points
0 = ¢ () =1,k

given by k continuous functions ¢(¢) of a single real variable
t on an interval ¢, <t < t;. The properties of continuous func-
tions are discussed in Chap. IV, Sec. 3. The notion of a con-
tinuous path curve is discussed in Chap. X, Sec. 7. The set L.
of the examples is arcwise connected but not polygonally con-
nected, and the set M is connected but not arcwise connegted.
The set 1. becomes disconnected if the origin is deleted, but the
set M remains connected when any finite set of points on\thc
y-axis is deleted.

Let us consider the set T of the examples of Sec. 2, namely, thc
Cantor discontinuum. This set is closed, since its complemén—
tary set is a sum of open intervals. It is nondense since a plece
of every subinterval of [a, b] belongs to an interval of the com-
plementary set, but it is dense-in-itself (and hence perfect) since
in every neighborhood of a point of F there are intervals of the
complementary set and hence end points of these intervals. 1t
is disconnected, and all its points are boundary points. Let the
interval [a, b] be the interval [0, 1], and let the points of this
interval be represented in the ternary system (sometimes called
the ‘“decimal system with base three’’). All points that can be
represented exclusively in terms of the digits 0 and 2 belong to
the set . (We here waive the requirement that the representa-
tion shall be normal, in the sense of Sec. 10 of Chap. 11.) This
representation could also be used to verify the properties of the
set F listed above. In the binary system every point of the
interval [0, 1] has a representation using only the digits 0 and 1.
Thus there is established a correspondence between the points
of the set F and the points of the inverval [0, 1}, which is one-to-
one except that the two end points of a complementary interval
of F correspond to the same point of [0, 1]. This shows that the
set F has the same cardinal number as the interval.(®

ExXERCISES

1. For each set A to E and G to M of the examples, specify
the set of interior points, of exterior points, and of boundary

1 For the equivalence thcorem needed here, see Chap. XIII, Sec. 5,
Theorem 1.
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points. Specify also the derived set and the set of isolated
points.

2. For each set of the examples, tell whether the set is closed,
open, dense-in-itself, perfect, or connected.

3. Determine the boundary points of the one-dimensional sets
determined respectively by the inequalities: (a) z*+ z < 1;

® ~5<z+1<0.

4. Prove that an open connected set S having no points at
infinity is polygonally connected. Hint: For a given point a in
S consider the subset A of S consisting of all points ¢ that can be
joined to a by a polygon in S.

5. Prove that if S and T are connected sets and ST + ST’
+ 8'T 5 0, then S + T is connected.

6. Prove that a connected set having an isolated point contains
no other point.

b. Sequences of Points, and the Weierstrass-Bolzano
Theorem.—An infinite scquence (x,) of points is said to have
the point b as a limit in case e > 0:D:FAmo:n>m-D -z,
in N(b; €. When this condition holds, we use the notation
lim z, = b. A point b is said to be a point of accumulation of a
sequence (z,) in case for every e > 0 there are infinitely many
values of n for which z, is in N(b; ¢€).

TaEorEM 10. A sequence (x,) can have at most one point b as
alimit. Iflim xz, = b, the point b is the only point of accumulation
of the sequence.

TrroreEM 11. If b is a point of accumulation of a set S, there
exists a sequence (z,) of distinct points of S such that lim z, = b.

Nne= o
If b is a point of accumulation of a sequence (.), there is a subse-
quence (T»,) such that lim z,, = b.
k= o

A set S is said to be bounded in case there exists an e-neighbor-
hood of the origin containing S.

TreorEM 12. The Weierstrass-Bolzano theorem. Every
infinite set S has at least one point of accumulation, finite or tnfinite.
If 8 is bounded, its points of accumulation are finite.

Proof —We fit a sequence of nets G, on the space, as in the
proof of Theorem 9. Since the set S is infinite, at least one
interval of the net Gy contains infinitely many points of S. Let
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[a;, bi] be such an interval. Likewise at least one interval
[az, bs] of the net G, which is a subinterval of [a;, by] contains
infinitely many points of 8. Proceeding thus, we define by
induction a nonincreasing sequence of intervals [a,, b,] from the
respective nets G, each of which contains infinitely many points
of 8. The coordinates a® form a nondecreasing sequence and
the coordinates b form a nonincreasing sequence, for each
h=1,+++, k If b = 4+ for every m, then lim, a®
= 4w, Ifa® = —« for every n, then lim, b» = —w, In
every other case the sequence (a) is bounded above, the
sequence (b®) is bounded below, and hence both conver%e to
the same limit. Let ¢® = lim, a® = lim, b{®, where ¢* ‘may
be 4+« or — . Thus a point ¢ is determined which is conta‘ned
in every interval [a,, b.] of the sequence selected above.  Mbpre-
over every neighborhood of ¢ contains all the intervals [a.,'b.)
from a certain one on, so that ¢ must be a point of accumulation
of S.

The theorem we have just proved is frequently stated under
the additional hypothesis that the set S is bounded. This addi-
tional hypothesis would be necessary if we had not adjoined to
space the points at infinity. The proof we have given covers
both cases. The same remarks apply to the following four
corollaries:

CoroLrLarY 1. Every infinile scquence (x.) has at least one
point of accumulation, finile or infinite.

Proof —In case the same point ¢ occurs infinitely many times
in the sequence, it is by definition a point of accumulation. In
case no point occurs infinitely many times, the set of points
contained in the sequence is itself infinite, and the theorcm
applies to it.

CoroLLARY 2. If an infinite scquence (x,) has just one point
of accumulation c, then lim z, = c.

Proof—If the conclusion were not so, there would exist a
neighborhood N(c; €) such that z, is not in N(c; ¢) for infinitely
many values of n. Then this subsequence of (z,) would by the
theorem have a point of accumulation distinet from ec.

CoroLLarY 3. If (E.) is a nonincreasing sequence of closed
sets, the sets E, have at least one point, finite or infinite, in common.

Proof.—Select a point z, in each E,. The sequence (z,) has a
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point of accumulation ¢, by Corollary 1. If z, = ¢ for infinitely
many values of n, then c is in all the sets E,, since the sequence
(En) is nonincreasing. In the remaining case there are infinitely
many distinet points in the sequence (z,.), and z, is in E, for
n > m. Thus ¢ is a point of accumulation of each set E, and
80 belongs to each E,, since cach E,, is closed.

It is interesting to note that a special case of this corollary was
proved and used in the proof of the theorem itself. As an exam-
ple, we may consider the sequence of one-dimensional sets E,

where E, = E.Jn < z]. Then [| E, reduces to the point + .

This illustrates the fact that, if we had not introduced the points
at infinity, we should need the additional hypothesis that the
sets E, are bounded.

CoroLLARY 4. If S and T are closed point sets having no com-
mon point, there is a number ¢ > 0 such that the neighborhoods
N(S; ¢ and N(T; €) have no common point.

Proof.—If not, there exists a sequence (e,) of positive numbers
approaching zero, a scquence (a.) of points of S, and a sequence
(b.) of points of T, such that each pair of neighborhoods N(a,; €s)
and N (b,; €,) has a point d. in common. The sequence (a.) has
a point of accumulation ¢, by Corollary 1, and by Theorem 11,
there is a subsequence (a,,) such that klim a. = ¢. Suppose
for simplicity of notation that lim b., = ¢;. Then by hypothesis

k= o
¢ is a point of S and ¢; is a point of T, and so ¢ ¥ ¢;. But
lim d,, = ¢, and lim d,, = ¢;, which is in contradiction with

ke w ke o
Theorem 10.

As an example, let S be the Cantor discontinuum F and let T
consist of the mid-points of the complementary intervals. Then
every pair of neighborhoods N(S; ¢) and N(T'; €) will have a point
in common. But if we omit from 7' all but a finite number of
its points, the conclusion of the corollary will hold. Another
example in which the conclusion of the corollary fails is obtained
by letting S consist of the points on a hyperbola and T' of the
points on the asymptotes.

6. The Heine-Borel Theorem.—A family § of regions @ is
said to cover a point set S in case each point of S is interior to at
least one region @ of the family .
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THEOREM 13. Let S be a closed point set covered by a family §
of regions Q. Then there 1s a finite subfamily, (Q, . . . , Qu), of
the family § which also covers S.

Proof —Suppose the theorem is not true. Consider the
sequence of successively finer nets (7, used in the proof of
Theorem 9. Then there is an interval [a1,b,] of the net G, such
that the conclusion of the theorem does not hold for the portion
of S contained in [a;, b;]. Similarly there is an interval [a,, b,]
of the net G; which is a subinterval of [ai, b;] and such that the
conclusion of the theorem is false for the portion of 8 contained
in [as, b2]. By an inductive procedure as in the proof of Theorem
12 there is defined a nonincreasing sequence of intervals [da, b,]
which determines a point ¢ belonging to all the intervals [a\ bn),
and also to the sct S, since Sis closed. By hypothesis the point ¢
is interior to a region Q of the class §, and hence all the intervals
[a., b.) from a certain point on are contained in this Q. This
contradiets the property by means of which the intervals [a,, ba)
were determined.

Again it is to be noted that the hypothesis of boundedness is
usually included in the theorem and may be omitted here only
because we have included the points at infinity in the space.

Let us now consider some examples in connection with the
Borel theorem. In example J, the circular regions constituting
the set also constitute a covering family. But there is obviously
no finite subfamily that covers J. Next, let S be the open
interval (0, 1). To each point b of S we may make correspond
the interval (b/2, 3b/2). The family § of such intervals covers
8, but no finite subfamily does so.  But if we adjoin to the family
& a neighborhood of the origin, however small, the interval (0, 1)
will be covered by a finite subfamily of the enlarged family §.
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The works of Hausdorff, Sierpinski, and Alexandroff and Hopf treat point-
get theory from an abstract and general point of view, so as to include func-
tion spaces such as the space of continuous functions discussed in Chap. VII,
Sec. 4. In an abstract treatment, one may take as the undefined notion
distance, or neighborhood, or open set, or derived set, etc. When suitable
postulates are taken as a basis, the other notions of point-set theory may
then be defined and their properties derived. Several notions in addition
to those described in this chapter are needed in a general theory, to care for
the new phenomena that present themselves.



CHAPTER 1V

FUNCTIONS AND THEIR LIMITS
PROPERTIES OF CONTINUOUS FUNCTIONS

1. Introduction.—In Sec. 4 of Chap. I, a function was defined
as being the same thing as a relation. A function may also be
described as a correspondence between two classes of oLjocts.
This correspondence need not be one-to-one, and we db not
insist that each element of one class actually have a corresﬁ\ond—
ing element in the other class. If the two classes of objects are
P = [p] and @ = [¢], we may use the following notation for the
function. For each p in P let g(p) denote the set of all elements
of @ which correspond to p. Thus g(p) is a subset of @, which
may be null. If 8 is a subset of P, let ¢S denote the logical sum
of the scts g(p) for p in S,

g8 = 2 g9(p).

pm S

The subset P, composed of all those elements p for which g(p) is
not empty is called the domain of the function g. The set
Qo = gP = gP,is called the range of the funetiong. The domain
P, is also called the range of the independent variable p; and the
range Q, is also called the range of the dependent variable g. The
latter name is sometimes applied to the whole class @ even when
some of its elements are not included in the correspondence. The
function g is said to be single-valued when each set g(p) has not
more than one element. In practice a function g(p) is frequently
specified by describing an operation or writing down an expression
that makes correspond to each value of the independent variable
p one or more values of the dependent variable q.

The same correspondence may be regarded from the reverse
point of view. We use the notation g—! for this inverse function,
which has Qo for its domain and P, for its range. Thus g~(¢)
consists of all those elements p such that ¢ is in the set g(p).
Also g—'T consists of all elements p such that the intersection

54
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Tg(p) is not null. The notation ¢S is used for the complement
of the set §. With these notations it is easy to verify the follow-
ing relations which hold for every subset T of Q:

(1:1) gg—'T O T-gP.
(1:2) g T D cg—'T-¢gQ.

In each case the class inclusion may be replaced by equality
whenever the function g is single-valued. Corresponding state-
ments with the roles of g and g—! interchanged are obviously also
valid. As a simple example, let us consider the following:

=1{1, 2 3}, @ ={a, b, ¢, d}, g(1) = {q, b}, 9(2) = {b, ¢},
g<3> = A. Then g~'(a) = 1, g'(b) = {1, 2}, () = 2, g-(d)
= A, gg(1) = {1, 2}, gg‘lg(l) {a, b, ¢}. The reader will
note that for our present purposes it is unnecessary to distinguish
between an element a and the class {a} whose only element is a.

A function g on P to Q is a single-valued function with domain
P ard range contained in Q. The theory of limits is applicable
also to multiple-valued functions, and there are some cases in
which it is convenient to include such funections. One of the
phrases “ ... on...to..."” or “single-valued” will be
used whenever it is necessary to indicate the restriction to single-
valued functions. In such cases it is not implied that the inverse
function is single-valued. We shall be dealing in the sequel
principally with functions whose domain is a set S in k-dimen-
sional space and whose range is likewise in a space of one or more
dimensions. A real-valued function is one whose range is con-
tained in one-dimensional space. When multiple-valued real-
finite-valued functions f and g are to be added, the values of
J(p) and of g(p) are added in all possible combinations to obtain
the set of values of f + g at p. The same understanding applies
to multiplication and to other operations. When algebraic
operations are not involved, we frequently permit the values
+ o, and — », as in Sec. 2 of this chapter and in Chaps. X to
XII.

A function g whose domain and range are both one-dimensional
is said to be nondecreasing in case g(zx:) = g(z2) whenever
Zy > 5. When the function g is multiple-valued, the inequality
g(z1) 2 g(xs) is supposed to hold for every pair of functional
values corresponding to z; and z,. The term nonincreasing has
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a corresponding definition. A monotonic function is one that
is either nonincreasing or nondecreasing.

2. Upper and Lower Bounds and Limits of Functions.—In
this section we shall be discussing a function f whose domain S
and range T are subsets of number spaces, and ¢ will denote a
point in the closure S of S. The following definition of limit
generalizes the one discussed for sequences in Chaps. 1T and II1:
limf(z) =b:=:e>0:D:3AN(c)s:xin N()S-D-f(z) C N(bje)
ze=c
The class inclusion sign is used in this definition becauise for
multiple-valued functions f(x) may stand for a set of points
rather than for a single point. The logical form of the defipition
is entirely unchanged from that given in Chap. I1, Sec. 10} only
the form of the restrictions on the variables is generalized. \The
limit b, when it exists, is always a point of the number space
containing the range I' of f. The following fundamental theo-
rem is easily verified:

TaEOREM 1. If a function f(x) has a limit at x = ¢, it has only
one.

We shall sometimes wish to consider only the values of the
function f corresponding to a subset Sy of its domain 8.  We may
then use the phrase “f as on S,”’ for such a section of the fune-
tion f. When S, is a proper subset of S, the section f as on S,
is regarded as a different function from the original function f.
Thus f as on Sy may have a limit b at a point ¢ in Sy when no
limit exists at ¢ for the original function f, since the above defini-
tion may be satisfied when 8 is replaced by So though not for S.
However, if b is the limit at ¢ of f, then b is the limit at ¢ of f as
on S, provided ¢ isin So. For example, let S be one-dimensional
space, f(x) = z* for z rational, f(z) = 1 for z irrational. If S,
consists of the rational points, lin} f(x) = 0 over Sy, that is, f(x)

z=0

as on Sy has the limit 0 at £ = 0. For another example let
f(z) = 1/(1 4+ €V#), and let Sy be the positive end of the z-axis.
Then the limit of f as on Sy at « = 0 has the value 0. This is
also called the right-hand limit of f(z) at £ = 0. The left-hand
limit of the same function at £ = 0 has the value 1. For a right-
hand limit at a point ¢ we may also use the notations lim f(z)

z=ct
and f(c + 0), for a left-hand limit the notations lim f(z) and

f(c — 0). We understand that the subset S over which the limit
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is taken consists in the first case of the points z in S such that
z > ¢, and in the second case of the points x in S such that
z < ¢. The right-hand limit f(¢ + 0) can have a meaning only
when ¢ is a right-hand accumulation point of S, that is, when ¢
is an accumulation point of the subset of S lying to the right of c.
A corresponding statement holds for the left-hand limit.

In defining limits many authors use only deleted neighborhoods
N(c). This usage may be included under the definition given
above, by excluding the point ¢ from 8§, 7.e., by considering f as on
S — {c}. Thus the definition we have adopted is more flexible.
We note that when ¢ is in S, and lim f(z) exists, it must equal

r=c
f(c), and so f must be single-valued at c. When one-sided limits
are being considered, it is convenient to exclude the point ¢, as
was indicated above. Thus the value f(¢) has nothing to do
with the existence or value of the limits f(¢ + 0) and f(¢ — 0).

For the following paragraphs until we come to Theorem 12
we shall be considering only real-valued functions.

The least upper bound of a function f(x) on a set S is defined
to be the least upper bound of the set fS composed of all the
functional values. We shall use the abbreviations “lu.b. f(z)
on S8” and “Bf(z).” The greatest lower bound of f(x) on S,
abbreviated ““glb. f(x) on S” or “Bf(x),” is defined in cor-
responding fashion.

TaeonrkM 2. If the set S is in one-dimensional space, a mono-
tonic single-valued function f defined on S has a right-hand limit
at each right-hand accumulation point of S, and a left-hand limit at
each left-hand accumulation point.

Proof —I1.et us assume for definiteness that f is nondecreasing.
Let ¢ be a right-hand accumulation point of S, and let r = g.l.b.
f(x) for £ > ¢. Then when r is finite

e>0:D:Jx.>cor = fx) <r+¢

and hence ¢ < z < x.-D-f(x) C N(r; ). The proof for the
other cases is similar.

TIn case the point ¢ is in the closure S of the set S where f is
defined, l.u.b. f(z) on SN(c; 8) is a function g(8) which is single-
valued and nondecreasing for & > 0, and hence has a limit at
8 = 0, by Theorem 2. This limit is called the upper limit of f(x)
at ¢, and is denoted by lim sup f(z) or im f(z), that is,

=¢

r=¢ x
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lim sup f(z) = g.L.b. [L.u.b. f(z) for z in SN{(c; 8)]
Tw=c
= lin; [Lu.b. f(z) for z in SN(c; 8)].
=

A similar definition holds for the lower limit, denoted by
lim inf f(z) or lim f(z). Note that the upper and lower limits
r=c r=c
always exist, finite or infinite, at every point of the closure of the
domain of the function. As in the case of limits, we may also
define right-hand and left-hand upper and lower limits for func-
tions whose domains lie in one-dimensional space, by replacing S
by S[z > ¢], ete. For the right-hand upper limit, for example,
we may use the notations lim s&p J(z) and f(c + 0). The\proofs
z=c i

of Theorems 3 to 9 are left to the reader. In case the function
f(z) is multiple-valued, each inequality is supposed to hold for
all the functional values. This is the reason for the use of the
sign < in Theorems 4 and 5, meaning that there is at least one
functional value for which the relation < does not hold.
TureoreM 3. For every function f(x),
lim inf f(z) < lim sup f(x).

r=c

THEOREM 4. lim sup f(x) ¢s a finite number U if and onlg) if:

r=c

1. €e>0:D:3N(¢)s:xinN(c)-D-flx) < U +¢
2. €e>0-D-FxinN(c;¢)» flz) € U — e
THEOREM 5. limsup f(r) = +w :i~:e>0-D-3rinN(c;¢)

I=c

> f(z) € 1/e.

TeEOREM 6. limsupf(r) = —w i~nie>0:D:3AN(c)s:xin
N() D -f(®) < —1/e. In this case A lim f(z) = — .

TrEOREM 7. lim sup f(x) = lim inf f(x) -~ 3 lim f(z) - D-
lim sup f(z) = lim f(z).

TrEOREM 8. lim sup f(x) < B:D:3N(c)s:z in N(c)-D-
f(z) < B.

TrEOREM 9. 3AN(c)s:zinN(c) - D f(z) £ B :D:lim sup f(z)
< B EL T

It is worth while to write out the statements of some of the
above theorems for the special case when the function f(z) is
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replaced by a sequence (a.). For example, Theorem 4 in this
case reads:

lim sup a. 18 a finite number U if and only if

1. €e>0:D:3n:n>nDa, < U +e¢
2. e>0m- D An>mse-a,> U — e
Fig. 1 illustrates Theorem 4 with ¢ = 0, and Fig. 2illustrates
the special case of a sequence. In Fig. 2, n is plotted along the
Y
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z-axis, and a, along the y-axis, and all the points of the graph
to the right of the line + = n, are supposed to lie below the line
y = U + ¢; to the right of every vertical line there lie some points
of the graph above the liney = U — e

EXERCISES

1. Write out the theorems corresponding to Theorems 4 to 6,
8, 9 for lim inf f(z).
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2. As an application of Theorem 2, show the existence of
lim (1 4+ 1/n)*, where n ranges over the natural numbers.

Show also the finiteness of the limit.

3. Determine the upper and lower limits, and the right-hand
and left-hand upper and lower limits, at £ = 0 for the following
functions:

(@) sin (1/2);  (b) 1/x;

@ S8 (@) (/) sin (1/2). .

4. Let the characteristic function of a set S be denoted by és,
that is, ¢s(x) = 1 when the point z is in S, and ¢s(zx) = 0 when
zisin eS. Let (4.) be a sequence of point sets, and let L \T= lim
inf A,, U = lim sup 4,. (These operations on sets were ddﬁncd
in Chap. II1, Sce. 3.) Show that for each point z,

lim inf ¢4,(x) = ¢.(x), lim sup ¢a,(xr) = ¢v(x).

ne= oo n= ©

The following theorem is Cauchy’s condition for the existence
of a finite limit of a function. It generalizes the condition stated
in Sec. 10 of Chap. I1 and may be proved in various ways. We
recall that we are permitting f(x) to be multiple-valued.

TrEOREM 10. Let f(x) be a finite-real-valued function defined
on 8, and let ¢ be a point of S. Then a necessary and sufficient
condition for lim f(z) to exist and be finite is that

r=c

(2:1) €>0:D:3N(c)s:xand 2’ in SN(c) - D |f(z) — f(z)]
< e

Proof—The condition is obviously necessary. To show its
sufficiency, let b = lim sup f(z), and let N,(c) correspond to

r=c
e = 1in (2:1). Then for a fixed point =’ of N1(c) and one of the
values f(z'') we have f(z2’') — 1 < f(z) < f(”") + 1 for all z in
Ni(c) and all values of f(z) (in case f is multiple-valued), and
hence f(z”') —1=b = f(2”’) 4+ 1, so that b is finite. By
Theorem 4, there exists a point 2’ in N(c) and a value f(z') such
that

b—e<f(@) <b+e
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and thus
b—2 <f(r) <b+ 2

for every z in N(c) and every value of f(x).
TaeoreMm 11. Suppose the funciions f(z) and g(x) are both
defined on the same set S, and suppose lim f(z) = A, lim g(x) = B,
T=c

x=c
with A and B both finite. Then

(2:2) lim [f(z) £ g(x)] = A % B;
(2:3) lim f(x)g(x) = AB;
(2:4) lim f(x)/g(x) = A/B if B=0

T=c

CororLLary. If P(y, z), Q(y, 2) are polynomials tn y and 2
with Q(4, B) # 0, then

i LY@, 0@) _ P(4, B).
2= QUf@), 9] ~ A4, B)

We shall give the proof of (2:3). The proof of the remain-
der of the theorem is left to the reader. Let € > 0, and let
6 <e¢/(1+|4]+|B]) and 0 < e <1. Then AN(c)s:z in
N@)S- D |f(x) — A] < &, lg(z) — B| < €&, and hence [g(z)|
< |B] + 1, |f(x)g(x) — AB| £ |f(x)g(x) — Ag(z)| + |4g(x) —
AB| < e(|B| + 1) + |4lex <e. It is clear that the corollary
may be gencralized to the case of rational functions of any num-
ber of functions and that it includes the special case of rational
functions of f(x) alone.

Let f(x) be a function with domain S, and g(y) a function with
domain 7' and range contained in the same space as the set S.
Then the composite function h(y) = fg(y) has for its domain the
set g-1S. When the function g(y) is multiple-valued, the nota-
tion fg(y) means the transform by the function f of the set g(y).
For such functions, the following theorem is valid:

TurorEM 12. Let lim f(z) = ¢, limb g@) =a. Then limb h(y)

y= y=

= ¢, provided the point b is in the closure of the domain g—'S.

Proof.—e > 0:D:38 > 05:zin SN(a; ) - D~ f(x) C N(c;e) -
ANB)s:y in TN(D) - D- g(y) C N(a; 8). Thus yin (g7'S)N(b)
*Dh(y) T Nic; o).

Although the theorem is valid in such a case as f(z) = prin-
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cipal value of csc~lz, g(y) = sin y, its result may be trivial.

In this example g~!8 consists of the odd multiples of =/2.
TuroreM 13. A necessary and sufficient condition for the exist-

ence of lim f(z) is that for each sequence (z.) in Swith lim z, = a

Tr=a Nwm ®
the corresponding scquence (f(z.)) has a limil.
Proof —The necessity of this condition is a special case of
Theorem 12. To show the sufficiency of the condition, we note
first that lim f(x,) has the same value for all sequences (z,) whose

n= o

limitisa. For if two such sequences (z.) and (¥.) made lim f(z,)

# lim f(y.), and if we set 2an—1 = Zn, Z2n = Yn, then the s}quence

n= o

(f(24)) would not have a limit. Let ¢ denote this common limit,
and suppose the condition is not sufficient. Then3 e >\03:n
-D- 3z, in SN(a;1/n) » f(x.) {C N(c;¢). But lim z, = g, and

ne=w

hence lim f(z,) = ¢, which is a contradiction.

n= o
The following inequalities involving the upper and lower
bounds and upper and lower limits of sums and differences of
functions are sometimes useful.
THEOREM 14. Let f and g be real-valued functions defined on
the same set S. Then the following inequalities hold, provided
those tnvolving indeterminate forms are omitted:

(2:5) M.+hg§§(f+g)é{§§i§§ <B(f +9)
< Bf + By,
@0 w-Bosnu-os{F2B <56y
< Bf - By,
@7) ng+£@y§@(f+o)§[%;iﬁg}
SIm (f+¢) S mf+m
(2:8) lim f— [m g < lim (f — )g{g;_%z]

slm (f—g) STm f—lim g.

In (2:7) and (2:8) all the upper and lower limits are supposed to be
taken at the same point a of S,
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Proof —The inequalities (2:5) are readily verified. Those in
(2:6) follow from (2:5) by means of the fact that B(—g) = —By.
Those in (2:7) and (2:8) follow from (2:5) and (2:6), respectively,
by means of Theorem 11, when the limits involved are finite.

8. Continuous and Semicontinuous Functions.—In this section
it becomes less useful to admit points at infinity into the range
of the functions considered. Therefore for definiteness we shall
assume throughout this section that the functions considered
have no infinite values. They may be multiple-valued and are
supposed to be defined on a set S unless otherwise specified.

A function f(z) is continuous at a point b in case b is in S and
lim f(x) exists. As a consequence of this definition,

z=b
lim f(z) = f(b),

and f is single-valued at b. 1t is also evident that when f(x) is
continuous at b, f(x) is a continuous function of each variable
z® at b, The converse is not true (see Chap. VII). A real-
valued function f(z) is lower semicontinuous at b in case bisin S,
f is single-valued at b, and lim n;f f(x) = f(b), and upper semi-

continuous at b in case b is in S, f is single-valued at b, and
lim Eup f(x) = f(b). Itis clear that f(z) is lower semicontinuous

if and only if —f(x) is upper semicontinuous and with the help
of Theorem 7 of the preceding section that a real-valued function
is continuous at b if and only if it is both upper and lower semi-
continuous at b. In case the domain S of f lies in one-dimen-
sional space, we say that f(z) is continuous on the right at a point
b in case f as on S; is continuous at b, where S; = S[z = b]. An
analogous definition holds for continuity on the left. A function
f is continuous (lower or upper semicontinuous, or continuous on
the left or right) on a set S, C S in case the corresponding
property holds at every point of So.

THEOREM 15. Let f(x) be upper semicontinuous at b, and
f(b) < u, where u 1s finite. Then there is a neighborhood N (b) on
which f(z) < u. Thus f is bounded above on N (b).

TaEOREM 16. Let f(z) and g(z) be real-valued functions con-
tinuous at b. Then the functions f(z) + g(z) and f(x)g(z) are
continuous at b. So also 1s f(z)/g(z), provided g(b) = 0. More-
over, if P(y, z), Q(y, 2) are polynomials with Q[f(b), g(d)] # 0,
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then
P[f(z), g(=)]
Qlf(x), g(=)]

18 continuous at b.

THEOREM 17. Let f(x) be continuous at x = a, let g(y) be con-
tinuous at y = b, and let g(b) = a. Then the composite function
fg9(y) is continuous at y = b.

TraEOREM 18. Let f and g be two functions continuous on S and
let f(x) = g(z) on a subset T of S. Then f(z) = g(x) on ST.

As an example to which this theorem applies we no&e the
important case when f and g are continuous on an intervall(a, b)
and are equal at the points of (@, b) with rational coordlﬁa,tes
They must then be cqual at all points of (a, ).

TaeorEM 19. Let f(x) and g(x) be upper semicontinuous at b.
Then f(x) 4+ g(x) is also upper semicontinuous at b.

Theorems 15 to 19 follow from Theorems 8, 11, 12, 1, and 14 of
Sec. 2.

TaeoREM 20. A necessary and sufficient condition that a
stngle-real-valued function f with domain S be upper semicontinu-
ous on S 1s that the set S, = S[f(x) = u] be closed relative to S for
every real number u, or for every rational number u.

Proof.—The necessity of the condition follows by indirect proof
from Theorem 15. Suppose that the condition is not sufficient.
Then there is a point b of S and a rational number u such that

3:1) fb) < u < lim sbup f(x),

and by Theorem 9 every ncighborhood N(b; €) contains a point
of S such that f(z) > u. Since S, is closed relative to S by
hypothesis, f(b) = u, but this contradicts (3:1).

TrEOREM 21. Let a and b be two points of a connected set S on
which f(x) is real-valued and continuous, and let f(a) < u < f(b).
Then there is in S a point x4 such that f(xe) = w.

Proof—Let So = S[f(z) = u], T = 8 — So. Since Sy is closed
relative to S by Theorem 20 and 8 is connected, So must contain
a point zo of 7’. Since f(z) = v on T’ by the analogue of
Theorem 15 for lower secmicontinuous functions, we must have
f(zo) = u.

That a function f may be everywhere discontinuous and yet
have the property stated in the last theorem is shown by the
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following example.”” Let the number z in the interval [0, 1] be
expressed as a decimal .aia:03 . . . @, . . . . If the decimal
.a1a305a7 * * * is not periodic, set f(x) = 0;if it is periodic and the
first period commences with az. 1, set f(z) = .@GanGantolonis = * ° .
In every subinterval, however small, of [0, 1], this function takes
every value between 0 and 1, and consequently it must be every-
where discontinuous while still satisfying the conclusion of the
last theorem.

A real-valued function f is said to have s minimum on the set S
in case the greatest lower hound of f on S is a value actually
assumed by f on S, and f has a maximum in case the least upper
bound is a value assumed. The following theorem is a basic
one for many proofs in mathematics.

TuroreM 22. If S is closed and f is lower semicontinuous on S,
then f has a minimum on S.

Proof—Let m = glb. f(z) on 8. Then there is a sequence
() of points of S, called a *‘minimizing sequence,” such that
lim f(z.) = m. By the first corollary of Theorem 12 of Chap. 111,
the sequence (z.) has at least one point b of accumulation, and
b must be in S since 8 is closed. By the assumed lower semi-
continuity of f, f(b) £ lim f(x,) = m, and hence m % — .
But m = f(b) by definition of m, and hence f(b) = m.

For Theorem 22 the assumption is frequently made that the
set S is bounded, but this is unnecessary when the points at
infinity are included in the space.

In place of the absolute minimum considered in Theorem 22,
it is sometimes desirable to consider a relative minimum. A
function f is said to have a relative minimum at a point b of S
in casc AN() 2:xin SNOB) - D~ f(x) = f(b).

Theorem 22 has the following corollaries:

CoroLLARY 1. If S s closed and f is continuous on S, then f is
bounded on 8.

CoRrOLLARY 2. Suppose S is a closed set contained in the one-
dimensional interval [a, b], and that a and b are, respectively,
right-hand and left-hand accumulation points of S. Suppose
that f is lower semicontinuous on S and has relative marima at a
and b. Then f has an absolute minimum at a point between a and b.

CoROLLARY 3. Let S be a closed set in one-dimensional space,
and suppose that f is continuous on S and has no relative mazima

1 See Lebesgue, Legons sur l'integration, 2d Ed., p. 97,
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or minima between the points a and b of 8. Then f is properly
monotonic between the points a and b.

A function f is said o be uniformly continuous on the set S in
case

€e>0:D:35>05:zin8-2'in SN(z;98) - D f(&') in N(f(z); ¢).

A slight generalization of this definition is the following: f is
uniformly continuous on the subset S, of its domain S in case

€>0:D:36 > 05:2in 8o 2’ in SN(z; 3) -D-f(z')in'N(J;(x);e).

It is evident that, when a function is uniformly continupus on
Sy, it is single-valued and continuous on S,. The proof Yof the
following converse theorem is based on the Heine-Borel theorem.
In the proof given by Heine® of this theorem on uniform ¢onti-
nuity occur the essential ideas of a proof of the Heine-Borel
theorem, which was stated by Borel® in a more restricted form
than that given in Chap. ITI.

TueEOREM 23. Let Sy be a closed subset of the domain S of f,
and let f be continuous on Sy. Then f is uniformly continuous on
Se.

Proof—Let ¢ be an arbitrary positive number. Then by
hypothesis,

zin 8p:D:38, > 0s: 2" in SN(z; 28.) - D f(z') in N(f(x); ).

In case S, contains any points at infinity, we also require that
8. < v/2/2. 1If to each x in S, we make correspond the neigh-
borhood N(z; 4.), this family of neighborhoods plainly covers
the set So. Hence by the Heine-Borel theorem there is a finite
subset T of Spsuch that zin So- D-3ain T » zinN(a;d,). Letp
be the smallest of the numbers §; forain T. If zisin S, and 2’
is in SN (z; B) then z’ is in N(a; 25,), and hence f(z) and f(z')
are both in N(f(a);e) and f(z’) is in N(f(z); 2¢). We note
that here it is essential that f(x) be restricted to have finite values.

ExXERCISE

Determine which of the following functions are uniformly
continuous, (a) on the interval 0 < z < 1; (b) on the interval
0<z < >,

1 Journal fir die reine und angewandte M athematik, Vol. 74 (1872), p.188.

* Annales scientifiques de I'école normale supérieure, Series 3, Vol. 12 (1895),
p. 51.
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1. 1/(z—1). 2. 2% 3. 1/(x — 2).
4, +/z. 5. sinz. 6. sin (1/z).

* Theorem 20 suggests that continuous functions might be
characterized by the closure of the inverse transforms of closed
sets. It is sometimes convenient to characterize them by means
of the closure of their graphs. We now state some theorems of
these types.

* We note that every set W of points w = (z, y) in the Car-
tesian product of z-space and y-space may be regarded as the
graph of a (possibly multiple-valued) function y = f(z), whose
domain 8§ is the z-projection of W and whose range T is the
y-projection of W. With these notations we state the following
theorems:

* TaeorEM 24. If W is closed, then its x-projection S and its
y-projection T are closed. If W is open, then 8 and T are open.

Proof —If xisin §’, and lim z. = z, where the sequence (z,) is

chosen from S, then a corresponding sequence (., y.) chosen
from W has a point of accumulation (x, ) in W, and hence z is
in S. To prove the last statement of the theorem we note that,
if N(z, y; &) C W, then N(z;¢) C S.

* TruorEM 25. When the function f is single-valued, a necessary
and sufficient condition that f be continuous is that whenever Ty 1s
closed relative to T, f~(To) is also closed relative to S. A second
necessary and sufficient condition is that whenever T is open relative
to T, f=(To) is also open relative to S. When f is single-valued
and its domain S is bounded and closed, a third necessary and
sufficient condition that f be confinuous is that its graph W be
bounded and closed. In this last case, for every closcd subset Sy of S,
J(8o) is also closed, and whenever Ty C T and f~1(T) is open rela-
tive to S, T is open relative to T.

Proof —To prove the necessity of the first condition, let
lim z, = z, where z,is in f~!(7T) and zisin 8. Then lim f(z.)

= f(z), f(x) is in Ty, and so z is in f~Y(T). Since f is single-
valued, f~Y(T — To) = 8 — f~*(T), and so the first condition
implies the second. The second condition is sufficient for f to be
continuous, since, for each ¢ > 0 and each zoin S, T = TN (yo;¢)
is open relative to 7', where yo = f(x,), and so f~!(T) is open
relative to S. Thus there is a number § > 0 such that SN (x; 8)
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C fYTy). To prove the necessity of the third condition, we
note that f(x) must be bounded, and that cvery convergent
sequence of points (., f(x.)) in the graph W must have its limit
in W. To prove the sufficiency of the third condition, suppose
that f is not continuous at xo. Then there is a point yo 5 f(xo)
and a sequence (x,.) in 8 such that (z., f(z.)) converges to (z, yo).
Then (xo, ¥o) is in W, and s0 yo = f(x0), which is a contradiction.
To prove the final statement in the theorem, consider a sequence
of points ¥, = f(x.) in f(S,), converging to a point ye. The
sequence (x,) has a subsequence (z.,) converging to a point z,
in So. Then since f is continuous, yo = f(x0), and so g is in
f(So). The proof for the case when f~1(7) is open relativie to S
is obtained by considering the set Sy = f~Y(T — T). !

We note that the transform f(S,) of an open set Sy may fail
to be open, as in the example f(x) = «* — 3z, Sy = (—1.5, 1.5),
where f(S,) is the closed interval [—2, 2].
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CHAPTER V
FUNDAMENTAL THEOREMS ON DIFFERENTIATION

1. Functions of One Variable.—In this section we shall con-
sider only single-real-finite-valued functions whose domain is a
point set in one-dimensional space with the points at infinity
omitted. ILet the funetion f have domain S, and let ¢ be a point
of S which is also an accumulation point of 8. Then f is said to
have a derivative or a differential coefficient at ¢ (over S) in case

lim L) = J(©)

z=c r — ¢

exists, where the limit is of course taken over the set S with the
point ¢ excluded. The derivative f’(¢), when it exists, may be
finite or have either of the values + o, —w. In case cis a
right-hand accumulation point of S and the limit exists when
taken over the subset of S to the right of ¢, it is ealled the right-
hand derivative, or the derivative on the right, and may be
denoted by f*(¢) when occasion arises for a distinguishing nota-
tion. The left-hand derivative may be denoted by f/—(¢). If
g(x) = —f(—x), then ¢"~(—c) = f*(c), g"*(—¢) = (o).

TuEOREM 1. Let f have a finite derivative at ¢. Then IAM
< o -Je >0s:x in SN(c; € D |f(x) — fle)] £ Mz — ¢|.
Hence f is continuous ai c.

The usual calculus proofs show that if two functions f and g
have finite derivatives at ¢, then their sum, difference, product,
and quotient have derivatives at ¢, given by the usual formulas,
provided, in the case of the quotient, that the denominator is not
zero. In the case of the sum, one or both of the derivatives may
be allowed to be infinite, except that they may not have infinite
values of opposite sign. In the case of the product, we may allow
the derivative of one factor, say g, to be infinite, provided g is
continuous at ¢, and we agree to replace fg’ by 0 in case f vanishes
at ¢. Under the same restriction, we may in the case of the
quotient f/g allow either f or g to have an infinite derivative.

69
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The reader may see the need for the precautions mentioned by
experimenting with combinations involving fractional powers of
z.

THEOREM 2. Let f have a right-hand derivative f'*(c) > 0 at c.
Then3b > cs:c <z <b-D-f(z) > flc).

By considering left-hand derivatives and by suitably changing
the sense of the inequalities in hypothesis and conclusion, we
obtain three other theorems from Theorem 2. These four
theorems have the following corollary: i

CoroLLARY. If f has a maximum or a minimum at a\point c
which 1s both a right-hand and a lefi-hand accumulation pm tof S,
and if f has a derivative at ¢, then f'(c) = 0.

TrHEOREM 3. Rolle’s theorem. Suppose f is contmuaus on
the finite closed interval [a, b] and has a derivative (finile or mﬁmte)
at each point of the open interval (a, b). Let f(a) = f(b). Then
there is a point ¢ in the open interval (a, b) such that f'(c) = 0.

Proof —By Theorem 22 of Chap. IV, the function f has a
maximum and a minimum on the interval [a, b]. When f is
constant, the point ¢ may be chosen arbitrarily in the interval.
In the remaining case either the maximum value or the minimum
value is different from f(a), and hence this maximum or minimum
is attained at a point ¢ interior to the interval. Then f(c) = 0
by the Corollary of Theorem 2.

Calculus textbooks frequently base the proof of Rolle’s
theorem on the false assumption that, if f is not constant, then
there must be some point at which f stops increasing and starts
decreasing or else stops decreasing and starts increasing. The
falsity of this assumption is shown by an example given in
Hobson [1], Vol. 1, pages 412-421, of a function satisfying the
hypotheses of Rolle’s theorem which has maxima and minima on
every subinterval but is not a constant. It is clear that such a
function cannot have a continuous derivative. A simpler exam-
ple of a function having a continuous derivative and having a
minimum at a point at which it does not stop decreasing and start
increasing is obtained by setting f(z) = 22 — sin (1/z)] for
z#0, f(0) = 0. The simple proof given above for Rolle’s
theorem is based on the theorem that a function continuous on a
finite closed interval has a maximum and a minimum on that
interval. In a beginning course in calculus this property may
well be taken as intuitively evident.
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THEOREM 4. Theorem of the Mean. Suppose f is continuous
on the finite closed interval [a, b] and has a derivative (finite or
infinite) at each point of the open interval (a, b). Then there is a
point ¢ in the open interval (a, b) such that

J) = fa) + f'ie)(® — a).

CoroLLARY 1. If f'(x) > 0 on the open interval (a, b), then
1) > f(a).

CoroLLARY 2. If f'(z) = 0 on the open interval (a, b), then
f(z) is constant on the closed interval.

For an example of a family of functions having the same deriva-
tive, but no pair of which differ by a constant, see Ruziewicz,
“Sur les fonctions, qui ont méme dérivée, et dont la différence
n’est pas constante,” Fundamenta Mathematicae, Vol. 1 (1920),
pages 148-151. From Corollary 2, it is apparent that the differ-
ence of two functions of such a family cannot have a derivative
everywhere, so that the derivatives of the original functions must
be infinite at some points.

CoroLLarY 3. If |[f'(x)] < M on the open interval (a, b), then
(1:1) If(@) — f@)] = M|z — |
for every x and % in the closed interval [a, b).

A function satisfying the condition (1:1) is said to satisfy a
Lipschitz condition with constant M. This condition will enter

the hypotheses of several theorems occurring in later chapters.
CoroLrLaRY 4. Iflim f'(x) = A, then f has a right-hand deriva-

z=a
tive f'+(a) = A.

Traeorem 5. If f(x) is conitnuous and has a derivative f'(x)
al each point of the closed interval a, b] and if f'(a) < C < f'(b),
then there is a point xo in the open interval (a, b) such that f'(zo) = C.

Proof —Let g(z) = f(z) — Cz. Then ¢'(z) = f'(z) — C, and
g'(a) <0, ¢’(b) > 0. Hence the minimum value of g(z) occurs
at a point z, between a and b, so that ¢'(z,) = 0, and f'(z0) = C.

Note that, although continuous functions and derivative func-
tions have in common the property stated in Theorem 5, a
derivative function need not be continuous. For example, let
J(z) = z?sin (1/z) for z 0, f(0) = 0. This function has a
derivative everywhere which is discontinuous at the origin. By
means of this function, other functions whose derivatives have
infinitely many discontinuities may readily be constructed,
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For the mth derivative f™ (z) we adopt the usual inductive
definition, that is, we say that f(z) has an mth derivative f(c)
at a point ¢ in case f(z) has an (m — 1)st derivative f=(z) at
each point of a neighborhood N(c), and f™?(x) has a derivative
f(c) at c. The usual modification is made in case ¢ is an end
point, of the interval of definition of f(x).

Turorem 6. Extended theorem of the mean, or Taylor's
formula with remainder. Suppose that f(x) and its first m — 1
derivatives are defined and continuous on the closed interval [a, b),
and that the mth derivative f0(x) exists, fintte or infinite, ‘?t each
point of the open interval (a, b). Then there is a point xoiof the
open inlerval (a, b) such that \

J) =f@) + b —a)f'(@) + - - - '
b= ay™!

b — )
+ (m = 1) Jor i (a) + (_”_L_‘[’_L Jom (xo).

Proof —l.et

gl) = fb) = fx) = b = 0)f () = - -~

S Ul ) L (b — )™,
[N AN Ay B i

where P is a number such that g(a) = 0. Then also g(b) = 0
and ¢ has a derivative ¢’'(x) = [P — f™(x)](b — 2)"~'/(m — 1)L
Hence the conclusion follows at once from Rolle’s theorem.

TaeornkMm 7. Differentiation of a function of a function.
Suppose that the function f(u) has a finite derivative f'(a) at a
point a of its domain S, and that g(x) has a finite derivative g'(b)
al a point b of its domain T'. Suppose also that g(b) = a, and
that b is an accumulation point of the domain T of the composile
function h(x) = f(g(x)). Then the function h has a derivative at
b, and h'(b) = f'(a)g’(h).

Proof —In case therc is a neighborhood N(b) such that g(x)
# g(b) whenever z is in the deleted neighborhood N (b) and in T,
the usual proof applies. In the contrary case, every deleted
neighborhood N (b) contains a point z in T such that g(z) = g(b).
Thus we must have ¢’(b) = 0. Let T) denote the subset of T’
for which g(x) = g(b), and let T; = To — T'1. Forzin T},

ha) — hb) _

r—b 0,
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and hence the derivative of h at b over T is zero. If b is an
accumulation point of T, the derivative of & at b over T is also
zero, since the usual proof applies on 7’; and ¢'(b) = 0.

An example in which the usual calculus proof is not valid is
obtained by taking g(z) = z?sin (1/z) for z 5 0, g(0) = 0.

*When a function f(z) does not have a derivative, it is some-
times useful to consider the one-sided upper and lower limits of
the difference quotient, which always exist when we admit the
values + . Let the domain 8§ of f be the closed interval [a, ],
and let the difference quotient or incrementary ratio

fa) = fGr)

Ty — T

be denoted by I(zi, #2). Itis clear that I is a symmetric function
of its arguments. Let the variable ¢ be restricted to small positive
values. Then

lim sup I(x+t, 1)
1=0

is called the upper right-hand derivate of f and denoted by
D+(x). The lower limit of I(x + {, z) is called the lower right-
hand derivate of f and denoted by Di(x). The left-hand deri-
vates, denoted by D—(x) and D. (x), arc defined in a similar way.
The notations Dtf(x), D.f(x), D f(x), D_f(x) will be used when
it is desirable to indicate the dependence of these functions on
the function f, as in Chap. X, Sec. 5. The right-hand derivates
are of course not defined at b, and the left-hand derivates are
not defined at a. When all four derivates are equal at a point,
the function has a derivative at the point. As an example, the
function f(z) = z sin (1/z), with f(0) = 0, has upper derivates
at z = 0 equal to +1, and lower derivates equal to —1. The
function

j@ =20, g0 =,

has at z = 0 a right-hand derivative equal to zero, an upper
left-hand derivate equal to 4+ «, and a lower left-hand derivate
equal to — . With the help of these concepts we can obtain

the following generalization of Theorems 4 and 5. Again the
proof is based on Theorem 22 of Chap. IV.
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*THEOREM 8. Let f(z) be continuous on la, b]. Then there is a
point ¢ in the open interval (a, b) such that either

(1:2) D(¢) = I(a, b) = D4 (o),
or else
(1:3) D_(c) 2 I(a, b) =2 D*(c).

Moreover, if Di(a) < C < D~(b), there is a point zo in (a, b)
such that '

(1:4) D~(z0) = C £ Dy(z0).

*CoroLLARY 1. All of the functions I(x, x3), D+(x), "D+(:c),
‘D—(x), D_(x) have the same least upper bound U and the same
greatest lower bound L on the open interval (a, b), and the values of
the bounds are the same for the closed interval [a, b]. Moreover,
for an arbitrary € > 0, each of the following inequalities is satisficd
at infinitely many points of (a, b):

Di(x) >U—¢ (D) > 1/eif U= +w),
D_(z) > U — ¢

D*(z) <L + ¢ D) < =1/eif L = — o),
D—(z) < L + e

Proof —Suppose Lu.b. D~(x) = U > U’ = Lub. D,(z) on
(a, b), and let ¢ > 0 and 8 in (a, b) be such that D—-(8) > U —
> U’. Then there exists a point a < 8 such that D.(a) < U
— ¢ 80 by (1:4) we are led to a contradiction. Hence lLu.b.
D—(z) £ Lub. D,.(x). By applying this case to the function g
defined by g¢(y) = —f(x) where y = —z, we see that Lu.b.
D+(z) = lu.b. D_(x). So all four derivates have the same least
upper bound. The equality of the lower bounds is obtained by
considering the function h defined by h(z) = —f(z). From the
definition of derivates and (1:2) and (1:3) it follows that the dif-
ference quotient I(xi, z2) has the same bounds. Since f is con-
tinuous, I(z;, x;) has the same bounds on the closed interval
[a, b], and hence this property carries over to the derivates. To
obtain the last statement of the corollary, suppose that for some
e> 0, D (z) £ U — e except at a finite set of points. Then by
what has already been proved, D,(z) £ U — ¢ on [a, b], con-
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tradicting the definition of U. A similar argument proves the
remaining inequalities. We recall that Dt(z) 2 D, (z), etc.

*CoROLLARY 2. f(b) — f(a) = u(b — a), where u s a number
between the upper and lower bounds of an arbitrary one of the
derivates of f.

The second corollary is a generalized form of the theorem of the
mean.

*COROLLARY 3. If one of the four derivates of f is continuous
at a point ¢, so are the other three, and all four have the same value
at ¢, so that the derivative f'(c) exists.

Proof —If D+(z) is continuous at ¢, the upper and lower
bounds of D+(x) (and hence also of the other three derivates)
on a sufficiently small interval containing ¢ will be arbitrarily
near Dt(c). From this the result stated readily follows.

2. Differentiation of Functions of Several Variables.—In this
gection we consider single-real-finite-valued functions whose
domain is a point set in the k-dimensional number space. Itis
more convenient in this section as in the preceding not to include
the points at infinity in the domain of the functions concerned.
For such functions of several variables, the notion of total differ-
ential assumes considerable importance. Without it we could
not obtain theorems generalizing those of Sec. 1. Note that
most of the definitions and theorems generalize at once to the
case when the values of the functions considered lie in a space of
any finite number of dimensions with the points at infinity
excluded.

For present purposes it is convenient to define a linear function
f(z) to be one whose domain is the whole finite space and which
satisfies the equation

flarz: + asz0) = af(21) + aof(22)

for every pair of points x,, 2, and pair of real numbers a;, a.
An equivalent definition states that a linear function f(z) is one
expressible in the form

(2:1) f@) = ¢iz® 4+ - - - + u®,
where the coefficients ¢; are real numbers.

t Here a121 + asz: denotes the point whose coordinates are a2, + a3z2'9,
oy 0T ® 4 gqz,®,
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A bilinear function g(z, y) is one which is linear in z for each g,
and linear in y for each z. An equivalent definition states that
a bilinear function is one expressible in the form

k
g(z, y) = 2 1ur YD
=1

The norm of a point z, denoted by [|z[|, is defined to be the
greatest of the numbers !x("l. The norm is a generalization of
absolute value and has analogous propertics. A norm dpuld be
defined in various other ways, for example, as the distance of z
from the origin. For a finite point c it is plain that the neighbor-
hood N (c; €) consists of all points z such that ||z — ¢|| < e

THEOREM 9. If f(x) is linear then AM < w3:z-D - |f(z)]
< M|z|.

It is plain that for a given f the set of all such numbers M is a
closed set. Its greatest lower bound is denoted by ||fl| and
called the norm of f. With our definition for ||z||, the expression
(2:1) leads to the formula

k

=3 lal

i=1

Now let f be an arbitrary function with domain 8, and let
¢ be a point in S which is an accumulation point of S. Then f
is said to have a differential df(c; z) at ¢ in case the function df
is linear in its second argument 2, and

€e>0:D:3N(c)s:zin SN(c) - D |f(x) — f(c) — df(c; x — ¢)|

= ellz =l

It is often convenient and suggestive to use the symbol dz for
the second argument of the differential df.

It is clear from the definition that a function of a single real
variable has a differential at ¢ if and only if it has a finite deriva-
tive at c. But for functions of more than one variable the situa-
tion is slightly different, as is indicated below.

TaeoREM 10. Let f have a differential at the point c. Then

AM < o .Fe > 0s3:2in SN(c;€) - D |f(z) — f(c)| £ M|z — ||

Hence f is continuous at c.
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The preceding theorem is a generalization of Theorem 1.

TrEoREM 11. If f has a differential df(c; dx) = ¢, dz®
+ + o+ & dz® at an interior point ¢ of its domain S, then f
has finite first partial derivatives at ¢, and the partial derivative
with respect to x® equals ¢;. Hence in this case the differential is
uniquely determined.

It follows from Theorem 11 that when f(z) has a differential
at a point ¢ interior to its domain S, this differential is the sum
of the differentials of the k functions obtained from f(x) by fixing
all but one variable. A simple example in which the differential
is not uniquely determined is obtained by taking for the domain
S of f the set of points (z, ¥) in two-dimensional space for which
|z] £ y?% and taking f(x, y) = 22 4+ y% Then a differential at
the origin df(0, 0; dz, dy) = ¢1dx + 92 dy must have ¢; = 0,
but ¢1 is quite arbitrary. The converse of Theorem 11 is
not true, as is shown by the following example. Let f(z, y)
= zy/(x? + y?) for (z, y) # (0, 0), f(0, 0) = 0. This function
is discontinuous at the origin, although it has finite partial
derivatives everywhere. Another example, in which the function
is continuous but still does not have a differential at the origin, is
obtained by setting f(z, ¥) = zy/(z* + y»)* for (z, y) # (0, 0),
f(0,0) = 0. However, Theorem 11 has the following partial
converse:

TueoreM 12. Let ¢ be an interior point of the domain S such
that f has finite first partial derivatives at cach point of a neighbor-
hood N (c) which are continuous at c. Then f has a differential at c.

The proof is made by means of the theorem of mean value.
A slightly more general theorem is indicated by Pierpont [2],
page 271.

TuEOREM 13. Suppose that each of the k functions g*(2),
with common domain T, has a differential dg(c; dz) at ¢, and
that the function f(z) has a differential df(b; dx) at b = g(c).
Then if ¢ is an accumulation point of the domain of the com-
posite function h(z) =flg(z)l, h has a differential dh(c; dz)
= dffb;dg(c; d2)] at c.

Proof —It is plain that the function dh(c; dz) is linear in its
argument dz. Suppose ¢ > 0. By hypothesis,

38> 0s: |z — bl < 8-D-|f(x) — f(b) — df(b; =z — b)|
S ez — bl
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By hypothesis and by Theorem 10,

AM-38>0s:z — ¢ <B-D |lg(z) — b|| < M|z —c|| < 8.
lg(2) — gle) — dglc; 2z — o)l < ¢llz — cf.
Note that M is independent of e. Hence for ||z — ¢|| < 8 we have

Ih(z) = h(c) — dflb; dg(c; z — o)]| = |flg(2)] — f(b)
— dfb; g(2) — bl + ldflb; g(2) — b — dg(c; 2z — c)]]
< eMlz — cf| + ||dflidlz — ¢].

It is interesting to note that the above proof is also\a valid
proof of Theorem 7. |

If in the third example following Theorem 11 weset x ='y = ¢,
the resulting function h(z) = |z|/+/2 fails to have a derivative
at z = 0, although the function f is continuous and has partial
derivatives everywhere. This with Theorem 13 shows that this
function f cannot have a differential at the origin.

By combining the results in Theorems 11 to 13 we obtain
the usual calculus rules for computing differentials. Thus, if
f(z) is linear, df(z; dz) = f(dz), and hence d(az) = a dz, d(z + y)
= dz + dy. By fixing first ¥ and then z in the product zy, we
get linear functions, and hence d(zy) = ydz + zdy. From
Theorem 13 and these results we have d(f + g) = df + dg,
d(fg) = fdg + g df, etec.

Consider a function f(x) for which df(z; dz.) exists for z on a
neighborhood N(c). If for each dz; the function df considered
as a function of z has a differential d?f(c; dz,, dx.) at ¢ the function
d?f is called the second differential of f at c¢. It is easy to show
that d¥ is linear in dz; as well as in dz;. In a similar manner,
differentials of all orders may be defined when they exist for the
function f(z).

Either of the notations f;» and 9f/8zY may be used to indi-
cate the first partial derivatives of a function f, with obvious
extensions for the partial derivatives of higher order.

A function f is said to be of class C’ on an open set S in case it
has a differential df(z; dr) at every point z of S, and df(z; dz) is
continuous as a function of z for every value of dz. In gen-
eral, f is said to be of class C™ on S in case it is of class C’, and
df (z; dz) is of class C™~ D on S for every dz. By use of Theorems
11 and 12 and induction it can be shown that an equivalent
definition is that the function f has all its partial derivatives
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up to and including those of order m existing and continuous on
the set S. This latter form of the definition is more convenient
for the type of functions we are considering.

THEOREM 14. Let the functions fi(z) be of class C™ on 8,
Jori=1,+"--,n, and let P(y) and Q(y) be polynomials in y®,

.« Y. Then P[f(z)] is of class C™ on 8, and its derivatives
are expressible as polynomials in fy, . . . , fo and their derivatives.
If QIf(z)] # 0 on 8, then the quotient Pf(z)]/Q[f(x)] is of class
C™ on 8, and its derivatives are expressible as polynomials in
fi, . « ., Ju and their derivatives divided by appropriatc powers of
Qlf ()]

Proof —The usual formal proof may be made for the first
derivatives of sums, differences, products, and quotients. Hence
by induction the statement of the theorem holds for m = 1.
The proof is completed by induction on m.

THaeoREM 15. Suppose the funciion f(x) is of class C™ on
the open set S of k-dimenstonal space, and the k functions g'9(z)
are of class C™ on the open set T of l-dimensional space, and
suppose that the subset To of T for which the point g(z) is in S is not
null. Then the set Ty 18 open, and the function h(z) = flg(z)] is
of class C™ on T,.

Proof —The set T, is open since the functions g?(z) are
continuous by Theorem 10. The theorem is true for m = 1, by
Theorem 13, and Theorem 16 of Chap. 1V, Sec. 3, and

ah/ox = of/aa» ag'> /82,
[

If the theorem is true for m = p — 1, then the functions
f2[g(2)] and 8g™ /92 are of class C»~V, and hence h,» = 8h/92z
is of class C»~D by Theorem 14.

The expression for the second differential, for example, of the
function h(2) is as follows:

d*h(z; dzy, dzs) = dflg(2); dg(z; dz1), dg(z; dz2)]
+ dflg(2); d%g(z; das, dza)).

It should be noted that when derivatives and differentials of
order higher than the first are concerned, use of the notation
for dependent variables easily leads to confusion. Strict adher-
ence to the functional notation is then both safer and simpler.
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Compare the remarks in Goursat [4], pages 22-26, and Pierpont
[2], pages 274-279.

The second differential d?f(z; dzi, dxs) of a function f of class
C” is always symmetric in its differential arguments dz, and dz,.
This is implied by the following theorem on interchange of order
of differentiation for functions of two real variables. For other
related theorems see Pierpont [2], page 265.

THEOREM 16. Let f(x, y) be a function of two real variables
defined in a neighborhood N (a, b), and supposc the partial deriva-
tives fs, fy, and foy exist and are finite in N (a, b) and fz, is continuous
at (a, b). Then the partial derivative f,. exists at (a, b) m:& equals
fa(a, b). .

Proof—Let g(z, y) = f(z, y) — f(x, b), and h(z, y) = ly(z, y)
— g(a, »)]/(x — a)(y — b). Then by applying the theorem of
mean value twice, we find that there exists a point z; between
a and z and a point ¥, between b and y such that

(T, 4
W) = EED g, ).

Hence, by the assumed continuity of f,, at (a, b),

lim h(z, y) = fula, b).

1ot
Also from the definition of f,(x, b) we obtain

. Sulae, ) — fi(a, b)

lim (r, y) = 202

From this it easily follows that

llf}l f!l(:r! bl)‘ : 'gl(a’ b) = lel(a7 b)'

But the expression on the left is by definition the partial deriva-
tive f,z(a, b).

TueorEM 17. Taylor's theorem with remainder. Let the
SJunction f(x) be of class C™ on the convex open sct S. Then for
every pair of points a and b in S there is a number o such that
0 <t <1and

J®) = f(a) + df(a; b — a) + d*f(a; b — a, b — a)/2!
+ - +d™Vfa;b—a, -, b—a)/(m—1)!
+ d™f(a + to(b —a);b —a, - - -, b — a)/m!
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Proof—The function fla 4+ (b — a)] has a continuous mth
derivative with respect to ¢ on the closed interval [0, 1], by
Theorem 15. Hence the theorem follows at once from Theorem
6.

*3. Indeterminate Forms.—In this scction we shall develop
some theorems that justify the methods employed in elementary
calculus for the evaluation of indeterminate forms. We are con-
cerned only with single-real-valued functions of a single real
variable. The first theorem is an extension of the Theorem of
the Mean.

TaeoreM 18. Suppose f(z) and g(x) are conlinuous on the
closed interval [a, b] and have derivatives ' and g’ which are neither
simultaneously zero nor simullaneously infinite on the open interval
(a, b). Suppose also that g(b) # g(a). Then there is a point ¢
between a and b such that g'(c) # 0 and

1) = f) _ [0
i = 9@ " 7©

Proof —Apply Rolle’s theorem to the function

- 0 fb) — fta)
h(z) = f(x) — f(a) — 70 9@ lg(x) — g(a)].

TrEOREM 19. Suppose f(z) and g(z) and their first m — 1
derivalives are continuous on the closed interval [a, b], and vanish
alz = a. Suppose also that the mih derivatives f™ (x) and g™ (z)
exist and are not simultaneously infinite and g™ (z) # 0 on the
open interval (a, b). Then there is a point ¢ between a and b such
that

1) _ ™.
ORI

Proof—By the Theorem of the Mean (Theorem 4) it is seen
that none of the derivatives g¢™"(z), . . . , ¢'(¥), can vanish on
the interval (a, ). Then the desired result follows from Theorem
18 by induction. The reader should note that it is not an essen-
tial generalization of the theorem to assume only that the func-
tions f, f/, . .. ,f™", g, ¢, ..., g™ have limits equal to
zero at; the point a, without actually being defined there. Forin
that case we may set f(a) = g(a) = 0, and then the hypotheses
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of the theorem as stated are all fulfilled, by Corollary 4 of
Theorem 4.

TreoREM 20. In addition lo the hypotheses of Theorem 18,
suppose that f(a) = g(a) = 0. Let S be the subset of the open inier-
val (a, b) on which g(x) # 0, and let T be the subset on which
g'(x) # 0 and f'(x) is finite. Then every limiting value of the
quotient f(z)/g(x) over a sequence (x.) chosen from 8 and converging
to a is also a limiting value of the quotient f'(x) /g’ (x) over a sequence
(%) chosen from T and converging to a. In pafticular, if
lim f'(z)/g'(x) = B over T, then lim f(x)/g(x) = B over, S.

This follows at once from Theorem 18. A similar theorem on
indeterminate forms follows from Theorem 19. However, most
of the elementary problems involving the indeterminate form 0/0
are solvable by repeated applications of Theorem 20. Another
theorem which is sometimes useful is the following:

TrEOREM 21. Let the function f and s first m — 2 derivalives
I, ..., f D be continuous on the closed interval [a, b]. Sup-
pose also that the (m — 1)st derivative f'— exists and is finite on
[a, b], and that f™ (a) exists, while f(a) = f'(a) = - - - = fm=V(qa)
=0. Then

lim Jle £ _ [
h=0 h™ m!

If similar conditions hold for a funclion g, excepl that the integer m
1s replaced by n, and if f™(a) and g™ (a) are finitc and not zero,
then

lim == = ifn < m,

=+ ifn >m,

fm(a)/g™ (@)  ifn=m.

When n < m, the requirement that f* (a) # 0 may be omiited.
Proof.—By the definition of derivative,

lim M,‘f—il) = f™(a).

h=0
Then from Theorem 19, with m replaced by m — 1, it follows that

fath _ o foa 4R _ (7
hm h=0 mlh m!

lim
A=0
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The final part of the theorem readily follows from the first part.
Sinee g™ (a) # 0, it follows that g(z) # 0 in a deleted neighbor-
hood of a.

The reader should note that the limits considered in Theorems
20 and 21 are one-sided limits, so that they are more generally
applicable than they would be if our consideration had been
restricted to two-sided limits. However, the limiting value a
of the variable x is supposed to be finite. The case when this
limiting value is infinite is taken care of by the simple artifice
indicated in the proof of the following theorem:

TrroREM 22. Suppose that f(x) and g(x) are continuous and
have derivatives f'(xz) and g¢'(x) which are neilther simullaneously
zero nor simullaneously infinite on the open interval b < z < 4.
Suppose also that lir}rx flz) = li5rn g(x) = 0. Let the sets S

and T be defined as in Theorem 20. Then every limiting value of

the quotient f(z)/g(z) over a sequence (x,) chosen from the set S and

approaching + = 1s also a limiting value of the quotient f'(z)/g'(x)

over a sequence (L) chosen from the set T and approaching + .

In particular, if lirf f'(x)/¢'(x) = BoverT,then lirf f(x)/g(x)
Z= 4 ® z=4+ ®

= B over S.

Proof—We may suppose that b > 0, so that the transforma-
tion z = 1/y carries the interval b < z < 4 into the interval
0 <y <1/b. Leth(y) = f(1/y), h(0) =0, k(y) = ¢(1/y), k(0)
= 0. Then the hypotheses of Theorem 20 are satisfied by the
functions k and k on an interval 6 = y = c.

In the next theorem the limiting value a of z may be either
finite or infinite.

THEOREM 23. Suppose that f(z) and g(x) are continuous and
have derivatives f' and g' which are neither simultaneously zero nor
simultancously infinite on the open interval (a, b). Suppose also
that lim lg(x)[ = +w. Then evcry limiting value of the quotient

f(x)/g(x) over a sequence (x.) comverging to a is also a limiting
value of the quotient f'(x)/q' (x) over a sequence (%) converging to a
and such that f'(Z.) is finite and ¢’ (%) # 0. In particular, if
lim f’(w)/y'(z) = B, then lim f(z)/g(x) =

z=a

Proof —Let hm Z. = @, hm f(x,)/g(xa) = L, hm ¢, = a, where

T, and ¢; are in the open mterval (a, b). Then for each k there
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is an integer n, such that ¢ < z., < ¢k, and

Jlex) 1

)| 1 g(xn)
gEa)| Tk

g(xn) — gler)

1
1[ <z
By Theorem 18, there is a point & between z.,, and ¢, such that

F'@) _ fan) — flew)
g &) g(xa) — gler)

_ [f(wm) _ flen) ] [ 9(xn,) ],

a g(xn) g(Tas) g(xn) — gler)

Hence limy. f'(Z:) /g’ (Zx) = L, and obviously lim; &, = d\

ExXurcises \

!
In each of the following examples, determine whether Theorem
20 or 21, or neither, is applicable in evaluating lim f(z)/g(x).
0

1. f(z) = z?sin 1/z, g(x) = ¢ — 1.

2. f(r) = ¢ — 1, g(x) = 23 sin 1/x + 22

3. f(x) = a*sin 1/ — 22, g(x) = 1 — cos® a.

4. f(x) = a3 sin 1/x, g(z) = sin? 7.

5. f(x) = ev —y — 1 — 2%y = 23sin 1/r, g(x) = ¢’ — 1.

]
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CHAPTER VI
THE RIEMANN INTEGRAL

1. Conditions for the Existence of the Integral.—The definition
of a definite integral as the limit of a sum, as presented in ele-
mentary calculus, was formulated by Riemann in the last century.
This definition will be reviewed here, and necessary and sufficient
conditions for the existence of the integral will be developed.
Throughout this chapter we shall restrict attention to real-valued
bounded functions f(r) whose domain is a finite closed interval
[a, b] in one-dimensional space. The functions considered need
not be single-valued.

Consider a partition P of the interval [a, b] into closed sub-
intervals I;. It is understood that the intervals I; are nonover-
lapping, that is, any pair of them have at most end points in
common. Let A; denote the length of I;, and z; a point of I;, and
let N(P) = greatest A;. Let

S®) = ), f@)A;

The sum S is in general a multiple-valued function, whether
regarded as a function of P or of N(P). The bounded function
f(z) is said to be Riemann-integrable or R-integrable in case

lim S(P)

N@P)=0

exists. When it exists, this limit is denoted by the familiar
symbol

/a " 1(z) da.

Tt is easy to see that the limit cannot exist and be finite when f(x)
is unbounded.
Let U; = Lu.b. f(z) on I;, L; = g.1l.b. f(z) on I,

SP) =) Uity Se®) = ) Li b
J J
85
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The greatest lower bound of the sums S*(P) for all partitions P
is called tne upper integral of f, and denoted by the symbol

[:" (z) dz.

Likewise the least upper bound of the sums S« (P) is called the
lower integral of f, and denoted by the symbol

b
[ (z) dx.
It is plain that S*(P) is the least upper bound of all tf\c\ values

of S(P). Likewise S¢(P) = g.Lb. S(P). \
TreorEM 1. For every bounded function |, [ " i) do <

/a ’ f(z) dz.

Proof —Let S*(P) and S« (P3) correspond to two partitions
P, and P,, and let P; be a partition formed by using all the
partition points of both P; and P,, which is thercfore “finer”
than both P, and P,. It is clear that

Sx (P2) = S (P35) = S*(P3) = S*(Py),

and from this the theorem follows.
THEOREM 2. For every bounded funciion f,

j; * a) dz = lim Sk (P), [ 1@ da = lim s%@).
N(P)=0

NP) =

Proof —Since f(x) is bounded, there is a number A such that
f(x) + A > 0. Hence we may assume f(z) = 0. Correspond-
ing to an arbitrary positive number ¢, there exists a partition P,
such that

S*(Po) < f * f(z) dz + «.

Let ¢ be the number of partition points in Py, U = Lu.b. f(z),
6 = ¢/Uq. Then for an arbitrary partition P with N(P) < s,

ﬁ * ) dz < S*(P) < f ® @) do + 2e.

For, 8*(P) = S; + S;, where 8 is the sum of the terms cor-
responding to intervals contained in intervals of the partition P,,
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and 8, is the sum of the terms corresponding to intervals con-
taining in their interiors partition points of P,. Thus Sr
< 8*(Po), since f(z) = 0, and S; < UgN(P) < e. This proves
the formula for the upper integral of f. The formula for the
lower integral of f follows from that for the upper integral of the
function —f. )

In Theorems 3, 4, 6, and 7 we shall consider a series of condi-
tions each of which is necessary and sufficient for a bounded
function f(z) to be R-integrable. The condition given in
Theorem 4 suggests a possible alternative definition for the
Riemann integral. The condition stated in Theorem 7 is usually
the most useful one.

THEOREM 3. A necessary and sufficient condition for f(x) to be
R-integrable on [a, b] is that

lim [S(P1) — S(P2)] = 0.
N(P)=0,N(P2)=0

This follows from Theorem 10 of Chap. IV, if we regard S(P)
as a function of N(P).

TaHEOREM 4. A necessary and suffictent condition for f(z) to be
R-integrable on [a, b] is that the upper and lower integrals of f be
equal.

Proof —The condition is sufficient, by Theorem 2, since
Sx(P) £ 8(P) £ 8*(P) for every partition P. Let us suppose
that the condition is not necessary. Then there is a function
J such that

c= [ f@ad - [abf(x) dz > 0.
For every ¢ > 0, there is a partition P, with N(P;) < esuch that
fo
0 < 8%Py) — [ f@) dz < C/3.

Associated with the partition Py, there is a value of the sum S(P,)
such that

0 = 8*(Py) — 8(Py) < /3,

and therefore

‘Ef(x) dz — S(Py)| < C/3.
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It may be shown in a similar way that there is a partition P,
with N(P,;) < ¢ and a value of the sum S(P,) such that

‘ Lbf (z) dz — S(Py)| < C/3.

Then |S(P:) — S(P2)| > C/3, and hence f is not integrable, by
Theorem 3.

The oscillation of a function f on a closed subinterval [c, d]
of [a, b}, denoted by the symbol ofc, d], is defined tb be the
difference between the least upper bound and the greatest lower
bound of f(x) on the interval. The oscillation of f at a point x
of [a, b], denoted by the symbol w(x), is defined to be the differ-
ence between the upper limit and the lower limit of f at the point
z. It is easily seen that

w(z) = lim ofx — &, z + 6],
5=0

and that o[¢c, d] = »(r) whenever the point r is interior to the
interval [c, d]. Also f is continuous at a point if and only if w
vanishes at that point. The next theorem is a generalization of
the theorem on uniform continuity (Theorem 23 of Chap. IV).

THEOREM 5. If w(x) < € on the inicrval [a, b, there exists a
number & > 0 such that olc, df < e on cvery subinterval [c, d] of
length less than 4.

Proof—For every z in [a, b] there exists a 6, > 0 such that
olx — 26, z + 28.] < e. By the Heine-Borel theorem, a finite
subset of the fumily of intervals (z — 6., x + 5.) covers the
interval [a, b]. The number § equal to the least of the numbers
8. corresponding to this finite subset satisfies the conditions of
the theorem.

The exterior Jordan content of a point set E is the greatest
lower bound of the sum of the lengths of a finite set of intervals
covering E (in the sense of Sec. 6 of Chap. 11I), for all such
coverings. The valuc obtained for the exterior content of a set
E would be the same if the points of E were not required to be
interior to the intervals. However, this requirement is a con-
venient one for the proofs of the next two theorems. In case the
exterior content of E is zero, we say simply that E has Jordan
content zero.

The exterior Lebesgue measure of a set E is defined in a
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similar way, the only difference being that the covering set of
intervals is permitted to be denumerably infinite. This differ-
ence makes the concept of Lebesgue measure much more useful
than that of Jordan content. The theory of Lebesgue measure
will be developed in detail in Chap. X. When the exterior
measure of E is zero, we say simply that £ has Lebesgue measure
zero. This is the only case we shall need to consider in the
present chapter.

The content and the mcasure of an interval are both equal
to its length. It is easy to see that every subset of a set of
measure (content) zero has measure (content) zero, and that
the sum of a finite number of scts of measure (content) zero has
measure (content) zero. The statement about sums extends to
denumerably infinite sums for mecasure, but not for content.
Thus a denumerable set has measure zero, although its exterior
content may have any value whatever. For example, the set
of rational points in the interval [a, b] has cxterior content
(b — a). However, the Cantor discontinuum (example F in
Sec. 2, Chap. I1T)has content zero, although it is nondenumerable.

TuEOREM 6. Let E; = Elw(x) = 8].  Then f(x) is R-integrable
on [a, b} if and only of for every & > 0 the sct E; has Jordan content
zero.

Proof —Suppose there is a number § > 0 such that the exterior
content of E; is a number 5 > 0. Then for every partition P
the sum of the lengths of the intervals of P containing points of
E; in their interiors is not less than 7. Ilence S*(P) — S« (P)
= 69 > 0, and by Theorems 2 and 4, f(z) cannot be integrable.
To prove the converse, let & and 5 be arbitrarily small positive
numbers, and let 7' be a set of intervals covering the set Es, with
length sum less than n. By Theorem 5 the parts of the interval
[a, b] not contained in the intervals of 7' may be subdivided into
intervals I, on each of which the oscillation of f is less than 6.
The partition P obtained by using the end points of the intervals
I, and the end points of the intervals of 7' as partition points is
such that S*(P) — S«(P) £ (U —-L)n+ (b — a)s, where L
Z f(x) = U on [a, b]. Hence the upper and lower integrals of
J(z) are equal, and f(z) is integrable, by Theorem 4.

THEOREM 7. A bounded function f(z) is R-integrable on [a, b]
if and only if the set D of points where f(z) ts discontinuous has
Lebesgue measure zero.
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Proof.—To show that the condition is necessary, consider a
sequence (8.) of positive numbers with lim, 8, = 0. Then the
set D is the sum of the sets E;, as defined in Theorem 6. By
Theorem 6, each Ej, is covered by a finite family of intervals
with length sum_ < 5/2", where 7 is an arbitrary positive number.
Hence D is covered by a denumerable family with length sum < 9,
and therefore has Lebesgue measure zero. To show that the con-
dition is sufficient, let T be a denumerable family of intervals
covering D and having length sum < 7, where 7 is again arbi-
trary. Every set E; is closed and contained in D. Hence by
the Heine-Borel theorem a finitc number of the intervals of the
family T cover E;, so that E; has Jordan content zery Thus
S(z) is integrable by Theorem 6.

2. The Fundamental Theorem of Integral Calculus. ——We make
the usual agreement that

A f@)dz = — Lbf(:r) dz.

In case the function f is R-integrable on [a, b] and ¢ is a point of
[a, b], the function

9@ = [[1@) do

is called an indefinite integral of f(z). If f(z) and h(z) are
single-valued functions defined on [a, b] and if A(z) has a deriva-
tive and A'(x) = f(x) on [a, b], then h(z) is called a primitive or
antiderivative of f(x). A function f may be R-integrable without
having an antiderivative, or vice versa. For example, let
f(z) = 0 for z irrational, and f(p/q) = 1/q when p/q is a fraction
in its lowest terms. Then f is continuous except for rational
values of z, and so is R-integrable on every interval, and its
integral has the value zero. For an example of a function which
has an antiderivative but is not R-integrable the reader may
consult Hobson [1], page 490.

Before stating the fundamental theorem, we shall list in
Theorems 8 and 9 some clementary properties of the Riemann
integral, which follow readily from its definition and from
Theorem 7.

TreoreM 8. Suppose f(z) and g(x) are R-integrable on [a, b).
Then

J(z) 18 R-integrable on cvery subinterval of [a, b);
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2. For every iriple of poinis c, d, and e in [a, b],
d e e
[ 1@ o+ [} 1@ dz = [ 1(z) da;

3. If f(z) is also R-integrable on the interval [b, c, it is 8o on the
extended interval [a, c);
4. f(z) + g(z) is R-integrable, and

[ 1@ + @z = [ 1) dz + [ g(2) de;

5. f(x)g(x) is R-integrable, and in particular cf(x) is R-integrable
for every real number ¢, and

Lb cf(x)de = ¢ Lbf(:r) dr;
6. If f(z) £ g(z) on [a, b],
Lbf(x) dr < Lb g(x) dx;

7. |f(x)] is R-integrable, and

S s ad = [P an.

TaeoreM 9.  Suppose f(z) is R-integrable on [a, b], and lel g(x)
be an indefinite integral of f(x). Then

1. |g@1) — g(x2)| £ M|z, — x| for cwery z, and x5 in |a, b],
where M = Lu.b. |[f(z)| on [a, b];

2. g(x) is conlinuous on [a, b];

3. If f(x) s continuous at a point ¢ of [a, b], then g(x) has a
derivative at ¢, and g'(c) = f(c).

The proof is based on the relations 2, 6, and 7 of Theorem 8.

CororuARY. Every function continuous on an interval has an
antiderivative on that interval.

TueoreM 10. Fundamental theorem of the integral calculus.
Suppose f(z) is R-integrable on [a, b] and also has an antiderivative
h(z) on [a, b]. Then

h(b) — h(a) = / ’ f(z) dz.

Proof.—Let P be an arbitrary partition of [a, b], with partition
points o;, where ¢ = ag < a3 < * * * < apn_1 < ap=>b. Then



92 THE RIEMANN INTEGRAL [CraP. VI

n

BO) — h(@) = ) [he) — hlai)] = ) f@:)(es — e,

11 =]

where a,_; < z; < a;, by the theorem of the mean for derivatives.
But the last sum is one of the values of S(P), and since
lim S(P)
NP)=0
exists, it has the value h(b) — h(a) as stated in the theorem.

A simple example of a discontinuous funetion satisfi'ing the
conditions of the fundamental thcorem is obtained by setting
f(x) = 2z sin (1/z) — cos (1/x) for x £ 0, f(0) = 0. THe func-
tion h(z) = x?sin (1/2) with A(0) = 0 is an antiderivative of
f(x). A bounded function f(r) having only a finite number of
discontinuities at which its right-hand and left-hand limits exist
is always R-integrable but cannot have an antiderivative and so
does not satisfy the conditions of the fundamental theorem. It
does however have an antiderivative in a generalized sense,
satisfying the conclusion of the theorem, and this suggests a
generalization of the fundamental theorem. A further generali-
zation will be taken up in connection with the Lebesgue integral
in a later chapter. We first state an immediate generalization
of Theorem 9.

*TaroreM 11.  Let f(x) be bounded on {a, b], and let

@) = [0 a@ = [ i

Then both the functions g,(x) and gi(x) have all the properties stated
in Theorem 9.

Since relations 2, 6, and 7 of Theorem 8 are applicable to the
upper and lower integrals, the method of proving Theorem 9 is
also applicable here.

*THEOREM 12. Let f(z) be bounded on [a, b], and lct h(z) be a
continuous function such that for cach x

o(x) = f(z) = ¥(2),

where ¢(z) and Y(x) are two of the derivates of h. Then the
upper R-integrals of f(x) and of the four derivates of h are all
equal, and the same holds true for the lower R-integrals. More-
over, the difference h(b) — h(a) lies between the upper and lower
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R-integrals of f(x) on [a, bl. Hence in case f (or an arbitrary one
of the derivates of h) is R-integrable, so arc the remaining der-
wates, and

h®) ~ k@) = [’ 1) da.

Proof—The upper R-integral of f(z) is defined to be g.l.b,
S*(P), where P is a partition of [a, b] into intervals [a;_;, o]
S*P) = ) UiA; & = a; — ajy, and U; = Lub. f(z) on the

closed interval [a;_3, @;]. If V; = Lu.b. f(z) on the open interval
(-1, @), then

THP) = ) V; 4 < SKP).

It is easy to see, however, that glb. T*(P) = g.lb. S*(P), so
that it is immaterial whether we use open intervals or closed
intervals in defining the upper and lower R-integrals. To prove
this we may temporarily assume (as in the proof of Theorem 2)
that f(xr) =2 0. Corresponding to an arbitrary ¢ > 0, choose the
partition P so that

(2:1) T*(P) < glh. T*P) + «

Insert additional partition points to form a partition P;, and
let the sums over the 1nterval~; of Py w hl(‘h have a point of P as
an end p(nnt be denoted by S;(Py), ’I' (P,), while the sums over
the remaining intervals are denoted bv S (Py), T (P;) Since
f is bounded, the partition Py may be so chosen tha.t Sy(Py) < ¢
and since f is nonnegative, we shall always have 8} (P)) < T *(P).
By combining thesce inequalities with (2:1) we find that S*(P,)
< g.l.b. T*(P) 4+ 2¢ and, since e is arbitrary, g.1.b. S*(P) = g.l.b.
T*(P).

To complete the proof of the theorem we note that by Corollary
1 of Theorem 8 in Chap. V the bounds of the four derivates of
h on the open interval (e,_1, @;) are the same, and hence the same
as the bounds of f on that interval. By Corollary 2 of the same
theorem, h(a,) — h(aj—1) < V;A;, so that h(b) — h(a) S T*(P),
and thus

h(b) — h(a) < [ f(z) da.

The corresponding inequality for the lower integral follows from
the above in the usual way by considering the negatives of k and f.
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EXERCISE
What is the solution of the following paradox? If

1
h(z) = 14 ez

and
el/z

f(z) = (1 F eve)?
then f(z) 2 0. h'(x) = f(x), and so

1 - \
0= / flr) dr = h(1) — W(—=1) = T;__ <ol

3. Further Properties of the Integral.—More gencral theorems
than some of the following can be proved even for the Riemann
integral but, since corresponding theorems will be proved for the
Lebesgue integral in a later chapter, we shall content ourselves
in this section with theorems whose proofs are comparatively
simple. The first two theorems are easily proved by means of
Theorems 8 and 10.

TueoreEM 13. Integration by parts. Suppose f(x) and g(r)
have derivatives f'(x) and g’(x) which are R-integrable on [a, b].
Then

J®)g(b) — fa)g(a) = /;bf(x)g’(x) dr + ﬁf’(r)g(x) dz.

TurorEM 14. Integration by substitution. Suppose f(z) is
continuous on [a, b], and g(t) has a derivative g'(f) which is R-inte-
grable on [c, d]. Supposc a < g(t) £ b for t on [c, d], and let
glc) = a1, g(d) = by. Then

Lb f@) dz = Ldf[g(t)]g’(t) dt.

*When the function g(t) is monotonic, the other requirements
for the validity of the formula for change of variable may be
lightened, as is indicated by the following theorem:

*THEOREM 15. Let f(z) be bounded on [a, b}, and suppose that
g(t) is nondecreasing on [c, d] and that ¢(t), one of the derivates of
g(t), is R-integrable on [c, d). Leta = g(c), b = g(d). Then
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f:’f(x) dz = f‘ fla(®le (1) at,
Lbf (2) dz = j;d Slg®]e(?) dt.

Hence if either of the Riemann integrals

[ 1@ d, [* sto@noc) as

exists, so does the other, and they have the same value.

Proof—let M =lub. |f(z)| on [a, b, K =1lub. ¢(f) on
e, d]. Let P be a partition of [¢, d] into intervals I ; of length A;,
and let P be the corresponding partition of [a, b] determined by
the function ¢(¢), with intervals I; of length A;. Some of the
partition points of P may be coincident, and so some of the
lengths A; may be zero, but this will not affect the validity of
the argument. Let U; = Lu.b. f(@) on I, U; = Lu.b. flg(t)]¢(t) on

I, i =1lub. (&) on I, ; = g1b. ¢(t) on I, S*(P) = Y Usa,
S*(P) = 2 U; A;. ‘Then since ¢ is nowhere negative, U; = Ujo;

where ; < o; < u,, and by Corollary 2 of Theorem 8 in Chap. V,
A; = A;6;, where [; < 6; < u;. Hence

%P = 84 = [} 105 - ;] = 3 05 — )
< M) Ko — 6] < MY K — by,

and the last sum approaches zero with N (P) since ¢ is R-inte-
grable. Also N(P) £ KN(P), so that

lim S*P) = f ’ 1) da,
N(P)—O

and hence the statement of the theorem about the upper integrals
follows at once. The statement involving the lower integrals
follows from that for the upper integrals with f replaced by —f.

THEOREM 16. Taylor's theorem with new form of remainder.
Suppose f(x) has derivatives up to and including the one of order
m on the closed interval [a, b, and suppose the mth derivative
J™ (2) is R-integrable on [a, b]. Then
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&) =f@) + ®— a)f'(@) + - - - + (___)_)_'1 Fm=1(q)

(m
o (m - 1)| / (1 = O™ 'f™[a + (b — a)] dt.

Proof—For m = 1, the theorem follows from Theorems 15 and
10. The proof is completed by induction and use of integration
by parts. For other forms of the remainder, see Jordan [5),
Vol. 1, pages 245f. i

TrEOREM 17. If S is a convex open sct in kdimensiok;al space,
and f(x) is of class C™ on S, then for every pair of poin \ aandbd
in S,

f@) = f(a) + df(a; b — a) + -

d™Vfa;b—a, - - -, b —a)
+ (m — 1!
! (1 - (m)
+ . W fla +tb —a);b—a, ---,b—dldl.

TeEOREM 18. First Theorem of the Mean for integrals.
Suppose that the functions g(x) and f(x)g(x) are hoth R-integrable
on [a, b], and that g(z) does not assume both positive and negative
values on [a, b]. Let L = g.l.b. f(z) on [a, b], U = Lu.b. f(z) on
[a, b]. Then

(3:1) [ @@ de = u [ (o) do

where L < p < U. If f(x) has a conlinuous antiderivative, then
we may take p = f(x,), where a < xo < b.

Proof—1t is plainly sufficient to consider the case when
g(z) 2 0. Then Lg(x) = f(z)g(x) = Ug(z), and hence

L[ gwdzz | " f@)g(x) de < U [ ga) de.

From this statement (3:1) follows immediately. Incaseg(zx) = 0
at all its points of continuity, we have

[l oz =o,

and the number x may be chosen arbitrarily. In the contrary
case there is a number 8 > 0 and a subinterval [a, 8] such that
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g(z) > 8 on [, B]. The function f(x) must also be R-integrable
on [a, ], and hence either f(z) = L at all its points of continuity
in [a, 8], or else there is a number ¢ > 0 and a subinterval [ay, 81]
of [a, 8] such that f(z) > L + e on [ay, B1]. In the latter case

[ f@u@ dr 2 L [ g0) do + (8 = ),

and thus u > L. Thus if ¢ = L, we must have f(z) = p at all
its points of continuity at least in the interval [, 8]. A similar
statement is true if g = U. Finally, in case L < p < U, the
desired conclusion follows from Theorem 5 of Chap. V.

Note that in the special case where g(x) is constant, the final
statement of the theorem may be derived directly from the
Theorem of the Mean for derivatives with the help of the funda-
mental theorem of integral calculus.

The Second Theorem of the Mean for integrals is proved in
Chap. XI, Sec. 7.
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CHAPTER VII
UNIFORM CONVERGENCE

1. The Cauchy Condition for Uniform Convergence.—Let
f(z, y) be a real-finite-valued function whose domain is the
Cartesian product ST. This is understood to mean! that the
variable z ranges over the set S in a space of one or moye dimen-
sions, and the variable y ranges over the set T. In the Yollowing
we shall suppose that a is a point of the closure S, and b is a

point of the closure T. In case lim f(z, y) exists for ex&ry z in
y=b

S, it defines a function of z, which is necessarily single-valued,

even though f(r, y) is a multiple-valued function. When

this limit does not exist, we may consider lim sup f(z, y) and
yﬂ
lim inf f(z, y). For the following definitions we shall suppose
y=b
that the functions g(z) and u(z) also have only finite values.
We say that lim f(z, y) = g(z) uniformly on S in case
y=b

e>0:D:ANG):2in S.yinN®) - D |f(z, y) — g(z)] < e

In order to phrase a definition of uniformity applicable to
upper limits, let us recall that, if

é(z, 8) = Lu.b. f(z, y) for y in N(b; 9),
then )
lim sup f(z, y) = lim ¢(z, 9).
y=b 5=0

We say that lim Sl}lp f(z, ¥) = u(x) uniformly on S in case
y'

lim ¢(z, §) = u(z) uniformly on 8.

30

The definition applicable to the lower limit is an analogous one.

In the figure there appear the graphs of z = u(z) and of
z = f(x, y) for a value of y in N(b; ), where & is such that ¢(z, 9)
< ulz) +e

Although it seems more convenient to require in the preceding
definitions that g(z) and u(z) take only finite values on S, the
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definitions could have been phrased without this requirement.
We could also consider functions f(z, y) whose domain is an
arbitrary set R in zy-space. If S is a set of points z such that
(z, b) is in the closure of the set of points (z, ¥) in R, then the
above definitions extend at once.

Z

ulx)+e

ul(x)

; : : flx,y)

The somewhat less restrictive notion of uniform convergence
at a point is occasionally useful. If hm Sz, y) = g(z) on 8§,

X

and lim [f(z, ¥) — g(z)] = 0, we say that hm flz, ) = g(=)
s

uniformly at a.V
TrrOREM 1. A nccessary and sufficient condition that a finite-
valued function g(z) exist such that lim f(z, y) = g(x) uniformly on
y=b

8 is that lim [f(z, y) — f(z, ¥')] = O uniformly on S, i.e., that
el
e>0:D:AND)s:z2inS8.yin NO®) .y in N®)
: ) “f(xr !/) - f(x7 y’)l <e
Proof —The necessity of the condition follows in an obvious
way from the definition. To prove the sufficiency, we note

that everything but the uniformity of the convergence follows
from Theorem 10 of Chap. IV. Thus, if y and ¥ are in N(b),

If(z, ¥) — g(@)| £ If(z, 9) — S, ¥)| + Iz, ¥) — ()]
<e+ lfx,y) — 9@

Since the left side of this inequality is independent of y’ and

1 See Hobson [1], Vol. 2, p. 110. Pierpont uses a more restrictive defini-
tion for this term. See (2], Vol. 2, p. 157,
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since hmb If(z, ¥') — g(x)| = 0, it follows that [f(z, ¥) — g(z)]

S eforall x in S and y in N(b).
2. Interchange of Order in Repeated Limits.—When

Bim f(z, y) = g(z)

and lim g(x) = C exist, we may call this value C a repeated limit

r=a

of f(z, y) and write
lim lim f(z, y) =

r=a y=b
When lim f(z, y) does not exist, we may use the notati(*l
y=b
lim f(z, y) \

for the multiple-valued function g(x) having the two values

hm sup f(z, y) and lim mf f(x, ¥), (and values in between if
=

des1red) Then when hm g(z) = C exists, we may write
r=a
lim [ f(z, ) = C
r=a y=b

and call this a generalized repeated limit.

The following fundamental theorem on interchange of order of
repeated limits is frequently called the *‘ Moore theorem” (or the
Moore-Osgood theorem).™  Its proof is given following Theorem
3, with indications of possible weakening of the hypotheses.

TareoreEM 2. The Moore theorem. Suppose that the functions
f(z, v), g(x), and h(y) are all real-finite-valued and that

(2:1) lim f(z, y) = h(y) on T,
(2:2) ]iir; f(z, y) = g(x) uniformly on S.

Then the limiis

lim f(z,y),  limg(z), lin; h(y)
r=a r=a =
y=b

all exist and are equal and finite.

18ee E. H. Moore, “Lectures on Advanced Integral Caleulus” (Unpub-
lished), University of Chicago, Autumn Quarter, 1900. Manuscript in
University of Chicago library, worked out by Oswald Veblen. See also
W. F. Osgood, Funktionentheorie, Vol. I, (1907), p. 519, for the special case
of double sequences.
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THEOREM 3. Suppose that
lim f(z, y) = C.

r=a
y=b

Then the generalized repeated limits
lim [ f(z, ), lim T f(z, 3)

L=a y=b y=b x=a
also exist and are equal fo C.

Theorem 3 follows immediately from the definitions.

For more general theorems, giving necessary and sufficient
conditions for the existence and equality of the generalized
repeated limits, sec Hobson [1], Vol. 1, pages 409-414.

Proof of Theorem 2.—We replace (2:2) by the weaker hypothesis

(2:3) Bf,l; [fx,y) — g(x)] = 0.

Since v

(2:4) lim [f(2, y) — g(x)] = h(y) — Iim g(z),
(2:5) Iim [f(z, y) — g(x)] = h(y) — lim g(z),

we find by Theorem 3 that
lim h(y) = lim g(z) = lim g(z),

y=b r=a r=a
and this with (2:3) gives the desired conclusion.
We could also replace (2:1) by the weaker hypothesis that

lim [im f(z, y) — lim f(z, y)] = 0,

y=b r=a T=a
where the upper and lower limits are finite-valued functions, and
still obtain the existence of lim f(z, ). Then in the proof

r=a
y=b

(2:4) and (2:5) would need to be replaced by inequalities obtained
from Theorem 14 of Chap. IV.

We include the following extension of the Moore theorem,
since it is sometimes useful to know that uniformity with respect
to a parameter is preserved for the limits occurring in that
theorem.
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TaEOREM 4. Suppose that the functions f(z, y, 2), g(z, 2), and
h(y, 2) are all real-finite-valued for x in S, y in T, and z in U,
and that

lim f(z, y, 2) = h(y, 2) uniformly on U for each y in T,

re=a

lin: f(z, y, &) = g(x, 2) uniformly on SU.
y-

{

Then lim f(z, y, 2) = lim g(z, 2) = lirr: h(y, 2) uniformly on U.
r=a T=a y=
y=b

Proof.—Let C(2) denote the common value of the three limits
in the conclusion. If |f(z, y, 2) — g(z, 2)| < e for all y in N(b),
zin §,and zin U, and |f(z,y,2) — h(y, 2)| < eforall y inN(d), =
in a neighborhood N,(a) depending on y, and z in U, then
|h(y, 2) — g(z, 2)] < 2¢ for all y in N(b), z in N,(a), and z in U.
Hence |h(y, 2) — C(2)| < 2¢for all yin N(b) and zin U. 1If we
fix y; in N(b), we then find |g(z, 2) — C(z)| < 4e for all z in
Ni(a) = N,,(a) and for all z in U, and finally |f(z, y, 2) — C(z)l
< 5e for all zin Ny(a), y in N(b), and z in U.

A function f(z, y) is said to be continuous in y at y ='b uni-
formly for x in S in case b is a point of T, f(z, b) is finite and
lim f(x, y) = f(z, b) uniformly for z in 8.
y=b

TurorEM 5. Supposc f(z, y) is conitnuous in y at y =b
uniformly for x in S, and continuous in x at x = a for eachyin T.
Then f(z, y) s continuous in (z, y) at (a, b).

This follows immediately from Theorem 2. An example of a
function that is continuous in z for each y and continuous in y
for each z, but not continuous in (z, y) at (0, 0), is obtained by
setting f(z, y) = xy?/(2* + y*) for (z, y) # (0, 0), f(0, 0) = 0.
In this example, f approaches zero along every ray through the
origin.

The next theorem is closely related to Theorem 5 and is also
an immediate corollary of Theorem 2. The reader should note
the special case when f(z, y) is replaced by f.(z), and b = + .

TreorEM 6. Suppose f(z, y) is continuous in z aft z = a
for each y in T, and lin: f(z, y) = g(x) uniformly on 8, where g(x)

y=

has finite values. Then g(z) 18 continuous at = a. )
The next two theorems are concerned with interchange of
order of limit and integral, and of limit and derivative, respec-
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tively. In them we shall suppose that the range S of the variable
z is a closed interval [, 8] of one-dimensional space.

TueoreM 7. Lel f(x, y) be R-integrable on [, 8] for eachy in T,

and suppose that llm fx, y) = g(x) uniformly on [a, B]. Then

g(z) s R-mtegrable on [a, 8], and
/ ? 9(x) dz = lim [ ? 1z, y) d.
a y=b J&

Proof.—Since f(x, y) is bounded as a function of z for each y,
it is easily seen that g(z) is also bounded. Now let (y.) be a
sequence of values chosen from T such that lim y, = b. Let

D. be the set of discontinuities of the function f(z, ¥.), and D
that of g(z). Then D is contained in the sum of the sets D,, by
Theorem 6. FEach D, has measure zero, by Theorem 7 of Chap.
VI, and so is enclosable in a sct of intervals the sum of whose
lengths is less than ¢/2*. Thus D is enclosable in a set of intervals
the sum of whose lengths is less than ¢, and so D also has measure
zero. Hence g(z) is R-integrable, again by Theorem 7 of Chap.
VI. By Theorem 8 of Chap. VI we have

[ @, v) — @) da] = 6 = o) Lub. |f@, ) — g@)]

fora £ xr £8,

and from this and the hypothesis of uniform convergence the
desired conclusion follows immediately.

When the convergence is not uniform, the conclusion in
Theorem 7 sometimes fails. For example, if the sequence (z,)
is a denumeration of the rational numbers in the interval [«, 8],

and fu(z,) = Lfori =1, - - -, n, f.(x) = O for all other values
of z, then lim f.(z) is not R-integrable. However, if fu(z) = 1

for @« < z < a 4 1/n, fa(x) = 0 for all other values of z, then
lim fu(z) = 0, and lim [’ fu(z) de = 0,
N= o fn= o

TuEOREM 8. Let f(x, y) have a finite partial derivative f(x, y)

Jor each y in T and z on [a, 8. Let z, be a point of [«, B] at which
lin: J(zo, y) exists and is finite, and suppose that lixr: Sz, y) = h(z)
ym- y=

uniformly on [a, 8]. Then there exists the finite limit lin: flz, v)
"-
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= g(z) uniformly on [a, 8], and g(z) has a derivative g’'(x) = h(x)
on [a, B
Proof —From the Cauchy condition, we have
lim [f(xoy yl) - f(xoi y2)] = 0

n=b

. 2=b
EO im 172(e, 1) — £, y2)] = 0 wniformly on [, Bl

yn=>b

y2=b

Let ¢ be an arbitrary point of [, 8], and sct

TG y) = fle w),

Fr,y) = pea—

for z > ¢. By applying the Theorem of the Mean to the fune-
tion f(x, y1) — f(x, y2), first on the interval from z to x, and then
on the interval from ¢ to x, we find

@, y1) =[x, y2) = [f(Z, y1) = fo(T, y2)l(z — 20)
(2:7) + f(l'(), f’/]) - f(xo, y2)7
F(x, y1) — F(x, y2) = fo(x*, y1) — faole*, y2),

where Z and x* depend on z, ¥, and .. Thus from (2:6) and
(2:7) and the Cauchy condition, we obtain the first part of the
conclusion, and also

Li:rz F(x,y) = q(ri -~ (‘( ) uniformly.
From this we obtain the desired result by use of Theorem 2.
The reader who is familiar with the theory of functions of a
complex variable will recall that when z is a complex variable
ranging over a r(\gion 8§ of the complex plane, f(x, ¥) has a deriva-
tive f.(z, y) for zin S and y in 7', and hn}) f(x, ¥) = g(x) uniformly

on 8, then g(z) must be analytic and hm f,(a y) = ¢’(z) uni-

formly on S, where S; is an arbltury (qued region interior
to S. It is important to have clearly in mind the difference
between this result and Theorem 8.

The next theorems are concerned with the continuity of func-
tions defined by integrals depending on a parameter, and with
formulas for the integrals and derivatives of such functions.

TeHEOREM 9. Suppose that f(x, y) is integrable on a Sz < 8
for each y in a set T, and that f(z, y) ¢s continuous in y at y = b
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uniformly for x on la, B]. Then the SJunction

102, 0) = [" 1=, y) do

is continuous in (y, 2, w) aty = b for z and w in le, 8.
Proof —Since

[rae= ["1ar - [*ran,

it is elearly sufficient to consider the function

by, w) = [ 1z, y) dr.

If [f(=, y) — f(z, b)] £ € for a S z = B, then |h(y, w) — h(b, w)|
< ¢/8 — a| by Theorem 8 of Chap. VI, so that h(y, w) is continu-
ousinyaty = b uniformly for w on [@, B]. By Theorem 9 of
Chap. VI, h(y, w) is continuous in w for each y. Hence  is
continuous in the two variables together, by Theorem 5.

The next theorem, on interchange of order for iterated inte-
grals, is a very special one. Wo restrict attention to this case
here because we have not considered multiple Riemann integrals.
A much more general theorem will be given in terms of Lebesgue
integrals in Chap. XTI

TrEOREM 10. Suppose T, ) is continuous in (, y) on
«=SzxSBvy=Sy=<s Then

LB [rsf(x‘, y) dy dx = /: Lpf(x, y) dzx dy.

Proof —The function [ is uniformly continuous, by Theorem
23 of Chap. 1V, and the two iterated integrals always exist, by
Theorem 9, and Theorem 7 of Chap. V1. Let 7 be a positive
number such that |f(z, y) — f@, YNl <e for |z —a/| <y,
lv — 9| <#%. Then if P,is a partition of [«, 8] with intervals
denoted by Az;, and P, is a partition of [y, 8] with intervals
denoted by Ay;, and if N (P:) <9, N(P,) < n, we have

’2 Zf(-’v-‘, Yi) Az Ay; — z Ef(x, y) dr Ay;f

=133 [ e v s, ) e )
i SeB — )5 —v).
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By combining this result with a similar one in which the roles of
z and y are interchanged, we find that

lz’ /;ﬂf(x, yi) dx Ay; — Z’ L"f(xi, y) dy Az < 2¢(8 — &) (8 — 7).

From this the equality of the two integrals readily follows.

TaEOREM 11. Suppose that f(z, y) and its partial derivative
fu(z, y) are continuous in (z, y) ma <z B, v =< y=9 Let
g(y) and h(y) be defined and have finite derivatives at |b, and let
¥ <b<§a<gh <B a<h®d) <B. Then the fur\ction

h(y)

Fo) = [, f@ ) ds

4

has a derivative at b, and

F'®) = [ 1@, ) dz + fTh(), bk (0) — flg(b), bl (b).
Proof.—Let us set

G,z w) = ["fz, y) dz.

Then by the Theorem of the Mean,

— G , w
ORI LA

=ﬁ%m@mm—n@wnm,

where 7(z) lies between y and b. By the uniform continuity of
fy(z, y), this expression approaches zero with (y — b). Hence
G has a partial derivative

Gy, 2, 0) = [ 1z, v) da,

since in the above argument, b may be any value between vy and
8, and Gy is continuous by Theorem 9. The partial derivative
G, = f(w, y), and G, = —f(2, y), by Theorem 9 of Chap. VI, and
these are continuous functions by hypothesis. Thus G has a
total differential by Theorem 12 of Chap. V, and then F’(b)
exists and has the value stated, by Theorem 13 of Chap. V.
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EXERCISES

1. Prove the following theorem: Let f(z) have a derivative
f'(z) which is continuous on [a, b]. Then
i 12 £ 1) = 12

lim = f’(z) uniformly on [a, b].

2. Discuss the existence of the following limits and of the
associated repeated limits:

(a) lim =5 ww>9&x¢ () lim (=1)meei2m 42 n)
11"0 y=+ n= @

3. Discuss the applicability of Theorems 7 and 8 to the case
where f.(r) = n*z exp (— n*z?), for various values of A and u, in
particular:

(@) A =0,u>0;

BYA >0, u > 2;

()0 <p <2\ <2

3. Infinite Series.—If z @, is an infinite series of real numbers,

let s, denote the sum of the first m terms. The series z a; is

said to be convergent in case the corresponding sequence (s,) of
partial sums has a finite limit. The series is said to be divergent
in case lim s, is infinite. In either case the sum of the series is
by definition equal to lim s,. When lim s, does not exist, the
series is said to be oscillatory.

This section will be devoted to the theory of convergent series.
However, divergent and oscillatory series have their uses and, to
indicate the nature of those uses, some remarks will be included
at the end of the section on methods of summation for oscillatory
series, and on computation and the study of functions oy the use
of oscillatory or divergent series.

It is clear that a series is, like a sequence, a function whose
domain is the class of natural numbers. The difference lies in
the operations that are, if possible, to be performed. In view
of the above definition, every theorem concerned with infinite
sequences and their limits can be translated into a corresponding
theorem on infinite series. The selection of a subsequence from
the sequence (s.) corresponds to a grouping of the terms of the
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series z a;. When lim s, exists, every subsequence has the same

limit. Hence the grouping of terms in a convergent series cannot
affect the value of the sum. But for each accumulation point ¢
of the sequence (s,) there is a method of grouping the terms of the

series z a, to form a series z b; whose sum is¢. For example, the

terms of the oscillatory series Za” where a; = (—1) can be
grouped to obtain the sum —1 or the sum 0. ‘

A rearrangement of a series E a, is effected by a ohe-to-one
transformation (z;) of the class I of natural numbers ingo itsclf.
The rearranged series may be denoted by Zb,, where \gz,- = @,
For example, a rearrangement of the series 1 — § + %\.\—- i+

. . is obtained by taking first the first term with a negative
sign, next the first 10 terms with positive sign, then the second
term with negative sign, then the next 10% terms with positive
sign, then the third term with negative sign, then the next 103
terms with positive sign, and so on, with no terms omitted or
repeated. In this case the original serics converges while the
rearranged series diverges to -+ oo,

A scries 2 a, is said 1o converge unconditionally when every
rearrangement of it converges and has the same sum. A series
z a; is said to converge absolutely when 2 ]a.', converges.

THEOREM 12. A necessary and sufficient condition for a series

a; of nonnegative terms to converge is thal the sequence of partial
sums be bounded.

An immediate corollary of this theorem is the comparison test
for series of nonnegative terms.

TrHeOREM 13. If a series of monnegalive lerms converges, it
converges unconditionally.

Proof —Let }: b, be a rearrangement of E a,, and let E a, = 8S.

Let i, denote the sum of the first m terms of the series ) b..

Thenm - 3Aps» tw < 5, = 8. Thus the sequence (t») is mono-
tonic and bounded and has a limit 7 = S. In the same way it
follows that S < 7.

Tueorem 14. Let z a, be a series that converges but does not
converge absolutely. Let C' be an arbitrary point of the interval
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[=e, +®]. Then there exists a rearrangement 2 b; of the series
whose sum s C.

Proof —Let ¢; = (|a.| + @.)/2, d; = (la.] — a,)/2. Then ¢; + d;
= |ai|, ¢ — di = a;. Since ) a; converges but ) |a;| diverges,
it follows that Zc, and zd, both diverge, although lim a;
=lime¢; =limd; =0. Let tn denote the sum of the first m
terms of the rearrangement zb,- which is to be determined.

Then we may select for the first &y terms of the series Z b,, the

first k1 nonnegative terms of the series z a,, where ky is the mini-

mum integer for which &, > Cif C is finite, &, > 11 C = + o,
and where k; = 1if C = — . For the next (k, — k;) terms of

z b;, select the first (k» — ki, negative terms of za., where ks

is the minimum integer greater than k; for which ¢, < Cif C is
finite, &, < —2if ¢ = — e, and where ky = k1 + 1if C = + .

For the next (ks — k2) terms of zb., sclect the first (ks — k2)

nonnegative terms of Zai not already used, where k; is the

minimum integer greater than k. such that &, > C if C is finite,
t, >3 1if C = +», and where kg = k; + 1if C = —o. The

rearrangement E b; is defined by the indefinite continuation of
these alternate selections of positive and negative terms. When
C is infinite, clearly zb, = C. When C is finite and k, £ m
< ki1, Jtm — C| £ |bi,) and lim b, = 0 since lim a; = 0.
TuarorEM 15. A series zai converges unconditionally if and
only if it converges absolutely.
Proof —Let z ¢, and 2 d, be the series introduced in the proof

of Theorem 14. Then if E!a.l converges, 2(:. and zd. also
.l

converge, by the comparison test, and hence ) a, converges.

The convergence is unconditional, by Theorem 13.  An uncondi-
tionally convergent series must converge absolutely, by Theorem
14.

It follows from the preceding theorems that, when every
rearrangement of a given serics converges, they must all have
the same sum.
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We next take up some fundamental notions concerning series
of functions. Let the functions u:(x) be single-real-finite valued

on the set 8. The series 2 u;(x) is said to converge absolutely-
uniformly on S in case z |ui(z)| converges uniformly on 8. The
series z u;(z) is said to converge unconditionally-uniformly on S
in case every rearrangement of 2 u;(x) converges uniformly on S.

TrEOREM 16. If 2 u;(x) converges absolutely-uniformly on S,
then z ui(x) converges wunconditionally-uniformly on \S, and
conversely. \;

Proof —Let Zvj(x) be a rearrangement of zu,(x). I‘By the
Cauchy condition for uniform convergence {Theorem 1),

P
e>0:D:3ms:p=m.xins- - 2 ()] < e

r=m

For each m there is an integer n such that the functions u,, . . . ,
Um—1 are among the functions vy, . . . , v,y in the rearrange-
ment, and for each ¢ there is an integer p such that the functions
vy, . . ., Vg are among the functions u;, . . . , u,. Then

q P
gzn.z2in8-D- IE 1),~(x)l =< z [ui(r)| < e
j=n i=m
Thus we have verified the Cauchy condition for the uniform con-
vergence of the rearrangement E v,(x).

To prove the converse, let us suppose that the series 2 [ui(z) |
does not converge uniformly. Then by the Cauchy condition,

P
(3:1) e >0:m-D-Ip=m-3z» z lw ()] > e

t=m

Let m; = 1, and let p; and z, be the corresponding values of p
and z given by (3:1). When mu, px, and zx have been deter-
mined, let M.y > pr, and let pryi and zi4q be the corresponding
values of p and z given by (3:1). We can now show how to
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obtain a rearrangement zv;(x) which does not converge uni-
formly, as follows. In the group of terms

P

z ui(x)

t=m,

let us rearrange the terms so that those which are positive at
=z, come first, and those which are negative at x, come last. Let
the sum of the first group be denoted by Aj, and the sum of the
second group by 4;. Then

P, Py,
D ule) = Af+ Az, Y lue)] = Af — 47 > ¢
jmm, t=m,

and hence either AF > e¢/20r Ay < —e¢/2. Thus by the Cauchy
ul
condition, Z vj(z) cannot converge uniformly.

The next theorem gives a useful sufficient condition for abso-
lute-uniform convergence. It is frequently called the “Weier-
strass M-test.” It is an immediate corollary of the Cauchy
condition.

Turorem 17. If the series z M; converges and if |ui(x)] £ M,

for every z in S and every i, then zu,-(x) converges absolutely-
untformly on S.

We shall now consider an example of a scries that converges
absolutely and uniformly but not absolutely-uniformly. Con-
sequently, by Theorem 16, it may be rearranged to form a series
that does not converge uniformly. Let

u; (x) = (—x)/i for0 =z <1,
=0 forz = 1.
The series obviously converges absolutely. To show that it
converges uniformly, we may use Abel’s identity, which may be
expressed as follows. Let

Ape = i @, By = 2 aiti,

i=p i=p
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where p < q. Then

By =typy+ ) (dpi — Ayl

[}
i=p+1

g—1
= z Ap(ti = tip) + Ay

i=p

To treat our example, set a; = (—1)i/i, & = 2. [Then for
0 £z <1 wehave

qQ g—1
D, w@)| = 1Bod = | ), An@ = 2 + Apard
e a—1 o i
Y lApl@ = 1) + |4 pqlae

i=p

S Mpar < Mm

IIA

where M, = lLub. |4, for 72 p. Since Za; converges,
lim M, = 0, and Zu,-(x) converges uniformly, by the Cauchy
condition. To show that the series does not converge absolutely-
uniformly, we note that, since z |a.| does not converge,

q
p D3¢ >p> 2 | > 1,
i=p
and hence

dxs z |u(x)| > 1.

For other examples sce Hobson [1], Vol. 2, page 119, example (7);
Pierpont [2], Vol. 2, page 165. The proof given for the uniform
convergence of the series in the example above may be generalized
to give a useful criterion for uniform convergence of a series, as on
page 117 of Hobson.

The theorems on series may be extended to multiple series.®®
We shall restrict ourselves here to a brief consideration of double

1 8ee, for example, Hobson [1], Vol. 2, pp. 49-56; Pierpont [2], Vol. 2,
Chap. 4; Reid [8], Chap. 4.
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series. Let the double series be denoted by z ai;, and let

m n

SRR

Smn = Ay
i=1)=1

When the row serics converge, we may let

m
Smeo = 25 asj.
1=13=1

By definition, a doublc series z a; is convergent in case
lim  sn.» exists and is finite. The series is convergent by

m= o n=

rows in case the row serics converge, and lim s exists and is

m= %

finite. The definition for convergence by columns is analogous.

Other definitions for convergence of double series have been
used,® but the one given above is the commonly aceepted one.
We may also consider convergence by rows and convergence by
columns in the generalized sense corresponding to that given for
repeated limits in Sec. 2.

TuroreM 18. A necessary and sufficient condition for a double

1
series 2 a,; of nonnegative terms to converge is that the partial sums

Smn are bounded.

Proof—If m < n, we have Smm = Swn = Snn. The sequence
($4s), being monotonic, has a limit S, which by the preceding
inequalities is also the limit of the double sequence (sma). It is

clear that S is finite if and only if (sms) is bounded.
TaEOREM 19. If o double series 2 a,, ts absolutely convergent,

then the series

1. Converges,

2. Converges by rows,

3. Converges by columns,

4. Converges when arranged as a simple series in any order.
Moreover, the sums so obtained are all equal.

Proof —As indicated in the proof of Theorem 14, the given
serics may be represented as the difference of two scries of non-
negative terms, and each of these will be convergent when the

1 See, for example, Jordan [4], Vol. 1, Chap. 3, No. 316.
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given series is absolutely convergent. Hence we may suppose
a;; = 0, and let S denote the sum of the series, ) b; an arrange-
ment as a simple series, and

9
g = bi.
‘ izl
Then smn < 8, £, £ S, and from these inequalities the conclu-
sions (2), (3), and (4) follow, by Theorem 12. 'Moreover,
Smn S Smeo and Sma = I, if ¢ is sufficiently large. Hex*:e Iim s,
= 8§, lim {, = 8.

Another criterion for the existence and equality of \the sum,
the sum by rows, and the sum by columns, of a double series
may be obtained from Theorem 2. Other types of theorems may
be found in the references at the end of the chapter.

*There are several useful methods for assigning a value to an

infinite series which apply to some oscillatory series Za, such

as the one for which a; = (—1)7. Perhaps the simplest of these
is the method of arithmetic means. If (sn.) is the sequence of

partial sums of the series Ea,, and the associated sequence of
arithmetic means

has a finite limit L, the series E a, is said to be summable (C, 1) or
(H, 1) to the value L. When the sequence of arithmetic means
of the sequence (¢») has the limit L, the series z a, is said to be

summable (H, 2) to the value L. This use of successive applica-
tions of the process of taking arithmetic means was developed
by Holder. Cesaro suggested a different extension of the method
of arithmetic means. It has since been proved that the methods
of Cesadro and of Holder give the same result. Several other
methods of summation have been invented by other mathema-
ticians. (See Hobson [1], Vol. IT, Chap. 1; Knopp [7], Chap. 13;
Fort [6], Chap. 17.) An essential requirement for the acceptabil-
ity of a method of summation is that the value it associates
with a convergent series shall be the ordinary sum of that series.
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*The theory of summability has applications in connection
with Fourier series. The Fourier series for a given function
f(x) may fail to converge for some values of x, but under certain
conditions the value of the function may still be recovered from
the series by a suitable method of summation. A similar state-
ment holds for power series. The serics

1l—z422—a284 - -

converges to 1/(1 + z) for —1 <z < 1, and it is summable
(C, 1) to the value of that function for z = 1. This suggests the

Abel method of summation. If E a, is such that the correspond-
ing power series z a,x’ converges for |x| < 1 to f(zx), and if the
left-hand limit f(1 — 0) exists and is finite, the series ) a; is said
to be summable (A) to the value f(1 — 0).

*Although convergent series are of predominant importance
in mathematical theory, oscillutory and divergent series are fre-
quently of practical use in computation. If a certain number of
terms of a series are to be used to compute a function, some assur-
ance is needed that the error committed lies within the required
limits, but the convergence of the series is quite irrelevant. A
convergent series may converge too slowly to be of practical use,
or a convenient formula for the remainder may be unobtainable.
A class of nonconvergent series which is also uscful in mathe-
matical theory, for example in studying the properties of func-
tions defined by differential equations, is the class of asymptotic

series.(V A series 2 awx—* is said to represent a function f(x)
E=0
asymptotically on the positive end of the z-axis in case

lim [f(x) — sa(@)}z® =0 forn=20,1,2 ---,

Z=4 o
n
where s.(z) = E axz—*. This definition may be generalized in
k=0
various ways; in particular, by allowing the variable z to be
complex.

1 See Knopp [7], Chap. 14; Fort [6], Chap. 18; Ince, Differential Equations,
pP. 169f.; Schlesinger, Einfiuhrung in die Theorie der gewshnlichen Differ-
entialgleichungen, 3d Ed., 1922, pp. 257f.
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ExXERCISE

State the theorems corresponding to Theorems 1, 6, 7, and 8
in terms of series.

4. The Space of Continuous Functions.—Let S be a set of
points in k-dimensional space, and let € denote the class of all
real-valued functions f that are continuous on S. The class
€ is a linear set in the sense that it contains the sum of every
pair of its elements and the product of each of its elements by an
arbitrary real number. It also contains the product of every
pair of its elements and is closed under two additional
which we shall introduce. If fi and f, are two functions, let
f1V f2 denote the function whose value for each z is the greater
of fi(z) and f.(x), and let fi A f. denote the function whose value
for each z is the lesser of fi(z) and fx(z). The results of these
two operations may be called “logical sum” and ‘““logical prod-
uct,” respectively, following Danicll,® or “join”” and “meet"”’
following a usage of lattice theory. The class € is easily seen to
be closed under these operations. ‘

It is frequently desirable to extend the domain of a function f
which is continuous on 8§, 7.e., to determine a function g which is
continuous on a set 7 including S and such that g(z) = f(z) on S.
Such a function g will be called an extension of f to be continuous
on T.

A function ¢(¢) defined for 0 < t < o is called a modulus of
continuity of a function f(x) with domain S in case®

0<t<owo.zinS.27in8.llx—2" =t |flx) — f(z")]
< ¢().

The least modulus of continuity of f(z) is the function ¢,(f)
whose value for each ¢ is the greatest lower bound of the values
of such functions ¢(¢f). It is clear that the function ¢o(Z) is
nondecreasing and nonnegative. Moreover, f(z) is uniformly
continuous on S if and only if }ing oo(f) = 0.

A function ¢(f) will be said to be concave in case the set of
points of the (¢, w)-plane for which ¢ is defined and v < ¢(¢) is a
1See Annals of Mathematics, Vol. 19 (1918), p. 280.

2 The notation ||z|| for the norm or modulus of & point was introduced in
Sec. 2 of Chap. V.
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convex set. A concave function ¢(t) defined for ¢ = 0 and having
¢(0) = 0 has the property that

(4:1) #(ts + 1) S ¢(t) + o(ta).

For, assuming for definiteness 0 <, < ¢, the point (¢; + 5,
¢(t1 + t)) must lie on or below the line joining the points
(t1, ¢(t1)) and (t2, #(22)), and also on or below the line joining the
points (0, 0) and (¢, ¢(¢1)). Hence

(la — t)d(t + t2) S tadp(ts) — t19(tr),
he(t + t) £ (t + to)o(t).

If we add these two inequalities and divide by f;, we obtain
(4:1). It is easily seen that a concave function must be con-
tinuous, except possibly at the ends of its interval of definition,
and hence the restriction that 0 < ¢ < f; may be removed.

In order to prove our theorem on extension, we shall make use
of the following preliminary result.

TrHEOREM 20. Suppose that the function ¢o(t) is defined for
0 <t < o, that there exist constants ¢ and d such that 0 £ ¢o(t)

< ct + d, and that lim ¢o(t) = 0. Then there exists a function
t=0

¢(t) which is (a) concave, (b) not less than ¢o(t), (¢) such that
lim ¢(t) = 0. Such a function $(t) is automatically continuous
t=0

and nondecreasing.

Proof —The set of points of the (¢, w)-plane for which ¢ > 0,
u £ at 4+ bis obviously a convex set. Consequently the product
V of all such sets for which ¢o(t) < at + bisconvex. The upper
boundary of V defines the desired function ¢(f). It is clear that
do(t) = o(t) S ¢t +d. To verify (c), we note that

€e>0:0:36>0:0<t=286-D¢do(t) S ¢
€e>0.6>0:D:Fa>0t>86-D-at+e>ct+d.

Thus ¢(t) < at + ¢ and so ¢(f) < 2¢if t < e¢/a. If ¢ were not
monotonic, it would become negative for large values of ¢.
TureoreM 21. Suppose that the function f is uniformly con-
tinuous on the set S. Then there exists an extenston g of f to be
continuous on the whole finite portion of space. This extension 18
uniquely determined on the closure Sof 8. If ¢(t) is a modulus of
continuity of f which is concave and approaches zero with t, then
the extension g may be required to have ¢(t) as a modulus of con-
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tinuity. 1If f is bounded, then the extension g may al the same time
be required to have the same bounds as f.(V

Proof.—Suppose first that f is bounded. Then its least modu-
lus of continuity is bounded, so that by Theorem 20 it has a
modulus of continuity ¢(f) which is concave and approaches zero
with ¢, and hence is continuous and nondecreasing. Let¢(0) = 0,
and

@) = Lub. [f(y) — ¢(l& — yI)] foryin 8.

Then when z is in S, f(y) — o(/lx — yl|) S f(x), so‘ that g(x)
= f(z). The function ¢ clearly has only finite valu(\,s, and by
Theorem 14 of Chap. 1V, |

g(x) — g@@) < lub. [o(la" — yll) = é(lle — ylD] foryin 8.
Now |z’ — y| < |l2' — z|| + [lx — y/l, and hence by (4:1),
o(llz" — yl) = o(liz" — =[)) + ¢(llz — yl]), so that

g(x) — g(’) = ¢’ — zl)).

Thus ¢ is also a modulus of continuity for the extension g. It
is clear that g has the same upper bound as f. Let g1 be the
function that is eonstant and equal to the lower hound of f, and
let g2 = g V g1. Then g, satisfies all the requirements and has
the same bounds as f.

In case fis unbounded, let us set K, = Efllz|| £ n], S, = SK,.
By the uniform continuity of f on S, the subset S, may be
divided into a finite number of picces on each of which the
oscillation of f is less than unity. Hence f is bounded
on cach S,. Assuming for simplicity that the set S, is
not null, let f; denote the section of the function f whose
domain is S;, and let g, denote the extension of f; which has the
same bounds as f1, obtained by the method of the first part of th~
proof. When f.i(x) and g.—i(x) have been defined, let f.(x)
= go1(x) on Kay + 8, fa(x) = f(z) on S,11, and let g.(x) be the
extension of f,(x). Now let g(x) = g.(x) on K.. Then g(z) is
seen to have the required properties. The uniqueness of the
extension on S follows from Theorem 18 of Chap. IV.

If we may take ¢(t) = Kt°, where 0 < a = 1, then f is said to
satisfy a Holder condition (Lipschitz condition when a = 1).

1 Compare McShane, “FExtension of Range of Functions,”” Bulletin of the
American Mathematical Society, Vol. 40 (1934), pp. 837-842.
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Thus our theorem shows that a function satisfying such a condi-
tion has an extension that also satisfies it. Moreover, the proof
in the last paragraph shows that a function f which is continuous
on a closed set S has a continuous extension g to the whole of
space. Such a function f need not be uniformly continuous on
S, although it is so on every S,.

Let us return to the consideration of the class € of functions f
continuous on S, and let us suppose hereafter that the set S is
bounded and closed. Then we may define the norm of f by
the formula

IIfll = Lu.b. |[f(z)| on S.

This norm has two important properties, expressed by the follow-
ing formulas, which hold for all functions f and g in € and all
real numbers a.

(4:2) lafll = |al-lifl,
(4:3) If =+ gll = 1A+ lgll-

For an easily discovered reason the last inequality is frequently
called the ‘“triangle inequality.” In terms of the norm the
distance from f to g is defined to be ||f — g||. The e-neighbor-
hood N (f; ¢) of a function f is defined to consist of all functions g
such that ||f — ¢l < e. Thus the class € becomes a linear space,
in which the notion of function of accumulation is defined in
terms of neighborhoods in the usual way. Along with this arc
associated automatically the notions of derived set, closed set,
open set, and so on. By Theorem 1 the space € is complete, in
the sense that every Cauchy sequence in € has a limit in €. But
not every bounded set of continuous functions has a function of
accumulation, so that to obtain an analogue of the Weierstrass-
Bolzano theorem we must introduce another condition.

If D is a subset of the space €, D is said to be compact in case
every infinite subset of D has at least one function of accumula-
tion. According to this definition, all finite sets D are compact.

The functions f of a set D are said to be equicontinuous at a
point b of S in case

lim f(z) = f(b) uniformly for f in D.
z=b

They are said to be equicontinuous on a subset T of S in case
this relation holds for every point b of 7. When T is bounded
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and closed, it is easily shown by means of the Heine-Borel
theorem that then hn; f(x) = f(b) uniformly for f in D and b in

T. It is also clear that when S is bounded and closed, the fune-
tions f are equicontinuous on 8 if and only if they have a common
modulus of continuity ¢(¢) which approaches zero with ¢.
We shall now find it useful to consider some conditions imply-
ing uniformity of convergence. ,
TrEOREM 22. Suppose that the functions fm(x) are ireal~ﬁm'te-

valued for x in Sand m = 1,2, - - -, and that
lim fm(x) = bm, lim f,,,(x) = ¢,
Tr=a r=a

where b, and ¢ are also finite. Then lim fu(z) = bn uniformly
with respect o m.

Proof.—By Theorem 3, lim b, = ¢, and thus

€e>0:0:3p.36>0:m>p.2inN(a;8) D
[fm@) — ¢ <e.lbm—c|] <e¢

and hence |fm(z) — bm| < 2e. Also

€e>0.p:D:IB>0a:m=p.xin N@a;B) D" |fu(x) — bu|
< 2,
8o that when z is in the smaller of the two neighborhoods N (a; 8),
N(a; 8), |fm(z) — bm] < 2¢ for all m.
TrEOREM 23. Suppose that the function f(x, y) s real-finite-
valued for z in the closed set S and y in T and suppose that

lim f(x 4+ h, y) = g(x) on S,
3
where ¢g(x) is finite. Then
lim f(x + h, y) = g(zx) uniformly on S.
]
Proof.—Since we may take b = 0, we have lirr; flx, y) = glx)
y=
for each z in 8. Then by Theorem 3, g(x) is continuous on S
and, if we set f(z, b) = g(z), f(z, y) is continuous on the closed

set for which z is in S and y = b, and so is uniformly continuous
on that set.
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THEOREM 24. Suppose that the functions fm(x) are continuous
on S form = 1,2, - - and that lim fn(z) = g(z) uniformly on

8. Then the functions fu(x) are equicontinuous on S.
Proof —By the Moore theorem (Theorem 2),

im fu(z + h) = g(z) on §,

me= o

and then by Theorem 22, ima Jfu(z + k) = fm(z) uniformly with
respect to m.

THEOREM 25. Suppose that the functions f.(x) are equicontinu-
ous on the bounded closed set S and that the sequence (fn(x)) con-
verges at each point of a set T whose closure T = S. Then the
sequence (fa(x)) converges uniformly on S.

Proof —Let g(z) = lim fum(x) wherever the limit exists. By

the Moore theorem, the three limits

im fu(x + k), limgz+h), lim fu(z),
h=0 h=0

Mo

all exist and are finite and equal, where z is in S and z + h
is restricted to be in the set T. Hence they also exist without
this restriction. Then by Theorem 23 we obtain the desired
conclusion.

Another theorem ensuring uniform convergence is due to Dini.

TuroreMm 26. Suppose that the functions fn.(z) and g(x) are
continuous on the bounded closed set S. Suppose also that the
sequence fn(x) ts monotonic for each z in S, and that lim fn(x)

m

= g(z) on 8. Then lim fu(z) = g(x) uniformly on S.

Proof —1It is sufficient to consider the case where g(z) = 0.
For a fixed z, and ¢ > 0,

3q 3 lfq(x)‘ Se
36> 03: b < 8-D|fu(z + W) E Ifo(2)] + ¢

and hence
mz2aq.|hl <D |fulz+ )| = 2

Thus the hypotheses of Theorem 23 are fulfilled.
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In both of the last two theorems, the variable m may be
replaced by a more general variable, as is shown by applying
Theorem 13 of Chap. IV to the function

F(y) = lu.b. |f(z, y) — g(z)| for z on S.

The need in the last two theorems for the hypothesis that S is
closed is shown by the following examples:

_m-+1 .
Im(z ==z 0<z<1;
Ja(z) = sin (1/x), 0<2z<1/nm
= 0, I/ne =z < 1.

From Theorem 24 we can easily derive a necessary condition
that a subset B of the space € of functions continuous on the
bounded closed set S shall be compact.

TarorEM 27. Suppose that B is a compact subset of €.  Then
the functions f in B are uniformly bounded and equicontinuous.

Proof —It is obvious that B must be bounded. Suppose the
functions f are not equicontinuous at a point z of S. Then

(4:4) Fe>05:m D Ffn. Thmo [[hal| < 1/m.
n(x + hm) = fu(@)] > e

However, by hypothesis the sequence (f.) has a subsequence
(fm,) which converges uniformly on 8, so that by Theorem 24 its
functions are equicontinuous on 8. But this contradicts (4:4).

That the conditions given in the last theorem are also sufficient
for compactness was proved by Ascoli.

THEOREM 28. Ascoli’s theorem. Suppose that the functions
f of a subset B of € are uniformly bounded and equicontinuous
on 8. Then B is compact.

Progf.—Let T be a denumecrable subsct of S whose closure
T = 8, and let the points of 7' be denoted by z;. The existence
of such a set was proved in Theorem 9 of Chap. III. In case the
set B is finite, it is compact by definition. If B is infinite, let
(fa) be a sequence of distinct functions chosen from B. By the
Weierstrass-Bolzano theorem the sequence (f.(x:)) has a finite
point of accumulation which we shall denote by g(z,), and there
is a subsequence (f'") such that lim f{’(x:) = g(z:). The

n

sequence (' (z2)) has a point of accumulation g(zs), and there is a
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subsequence (f{?) of (f) such that lim f®(zs) = g(xs). Pro-

ceeding in this way, we obtain a sequence of values g(x,) and a
sequence of subsequences such that lim f(x,) = g(x;) for j < 4.

The ‘‘diagonal sequence” (fi”) will be denoted by (F,). If the
first ¢ terms of (F.) are omitted, the remainder forms a subse-
quence of (f%), so that lim F,(x,) = g(x:;) fori =1,2,3, - - -,

that is, the sequence F,(z) converges on 7. Then by Theorem
25, it converges uniformly on the whole of 8.

In the above proof of Ascoli’s theorem we used the property
that every subset S of the k-dimensional space R is separable,
in the sense that there exists a denumerable subset 7' whose
closure T D S. When 8 = R, the set 7 may be chosen to
consist of all the points with rational coordinates. The space €
of continuous functions also has the property of being separable.
This is a consequence of Theorem 29, duc to Weierstrass, on the
approximation of a continuous function by polynomials. For the
class of polynomials with rational coefficients is denumerable, and
every polynomial may be approximated uniformly on a bounded
sct S by polynomials with rational coefficients.

TarorREM 29. Weierstrass’ theorem. If f(x) is conlinuous on
the bounded closed set S, then there exists a sequence of polynomials
P.(x) converging to f(x) uniformly on S.

Proof —By a lincar transformation of variables we may trans-
form the set S into a set interior to the interval A consisting of
the points x for which 0 £ 2™ £ 1, so we shall suppose that S
is interior to A. By Theorem 21 we may suppose that f(zx) is
actually defined and continuous on the whole interval A and
has the same bounds on A ason S. Weshalllet M = [|f|| = Lu.b.
|7/(z)| on A, and let ¢(f) be a modulus of continuity of f on 4,
which approaches zero with . For convenience in writing the
integrals below, we set f = 0 at points outside the interval A.
Let B denote the interval consisting of the points for which
llz]l =1, and set

k
Q.(z) = H (1 — z@2)m,

i=1

(4:5) —1;=/Q,,(a:)dx / / Qu(z) da® - - - dgm,
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(456) Pu@) = in L FO@u(z — @) de.

Then it is clear that @.(x) = 0 on B, that P.(x) is a polynomial,
and that for z in A we have |[P.(z)] £ M and

(4:7) P.(z) = pa /B S + 0)Qu(v) dv.

Now let 8, = [all z5: ||x|| < {]. Then on the sct B ——{S, we have
(4:8) Qu(x)| = (1 — i)~
Also if 8 = n™%,

: Q,.(x) dr = / (1 = 1/n)kdr = [26(1 — l/n)"]’c
so that
(4:9) pn E cnt?

where ¢ is a properly chosen constant. Now let « denote the
minimum distance from the set S to the boundary of the interval
A, and let t < . Then, by referring to (4:5) and (4:7) to (4:9),
we see that on the set S,
IPa(@) = 1@)] = wl [, @ + 1) = 1@)]Qu) ]
i o, 11 + ) = F@]Qu6) dv

+ o [y W@ + 0] + [f@)]) @nlo) dv
< o(t) + 2M (1 — 2)nent’2,

I

IIA

For an arbitrary ¢ > 0, we may choose { so that ¢(f) < ¢, and
then there is an index ¢ such that for n > ¢,

2M (1 — t)ment? < e

This completes the proof.

For other methods of proof for this famous theorem of Weier-
strass, see D. V. Widder, T'he Laplace Transform, pages 152-153;
also Hobson [1], Vol. 2, pages 228-234, 459-461, and references
there. The proof given above is due to Landau.t It may be

1 Rendiconti del Circolo Matematico di Palermo, Vol. 25 (1908), p. 337.
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shown that when the function f is of class C‘® on the interval 4,
the derivatives of the polynomials P.(z) defined by (4:6), up to
and including those of order p, will converge uniformly on S to
the corresponding derivatives of f.(»

The space € contains functions that fail at every point to have
a derivative, finite or infinite. To show this we cite the following
example, due to Weierstrass, of a function of a single variable.
For a more claborate discussion of nondifferentiable functions
and for other examples, see Hobson [1], Vol. 2, pages 401-412.

Let 0 < b < 1, and let k be an odd integer such that

(4:10) bk > 1 + 3n/2.
Then the scries

(4:11) f@) = Z b cos (kmnz)

n=0
converges uniformly and so defines a function f which is continu-
ous for all z. We shall show that at every point the upper
derivate of f on one side is + « while the lower derivate on the
other side has the value — =,

Let f(x) = sm(x) + rn(r), where s.(x) denotes the sum of the
first m terms of the series (4:11), and let

Swm = [8m(x + h) — su(x)]/h, R = [rm(z + h) — ru(x)]/h.
Then by the theorem of mean value it follows readily that

a(bk)" — 1] _ w(bk)"
bk —1 “bhk—1

(4:12) [Sn] <

Now to each x and m there corresponds an integer p such that
lkme — pl = %

Let ¢ = k™2 — p, h = (£1 — ¢)/k™. Then

(4:13) |h| < 3/2k™,

and h may be cither positive or negative. Now k"(z + h)
= k*m(p + 1), and £ is odd, so that forn = m,

cos [k*r(z + h)] = (—=1)"*L

1 See la Vallée Poussin, Cours d’analyse, 2d Ed., Tome 2 (1912), pp. 126~
137; Graves, Annals of Mathematics, Vol. 42 (1941), pp. 281-292.
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Also
cos (k™rzx) = cos [k*™r(p 4 q)]
= cos (k*™xp) cos (k" ™rq)
= (—1)” cos (k~rg),

s0 that
4:14) R ="_ —lh— 2 b1 + cos (k*rg)].
|
Every term of the series on the right side of this expression is
nonnegative and, since |g| < #, the first term (corresppnding to
n = m) is not less than b™. Thus by (4:14) and (4:13
\

2(bk)™ \
Z ” > =55
and hence with the help of (4:12)

Rl 2

\ .\ m g —_ ___1___, .

By (4:10), the expression on the right tends to + « with m, and
by (4:13), h tends to zero. Since [f(z + k) — f(2))/h = Su + R,
we see from (4:14) that if the integer p is odd for infinitely many

values of m, then D*(x) = 4+, D_(z) = —o, while if p
is even for infinitely many values of m, then D, (z) = — o,
D™(z) =

The series (4:11) in the above example is a series of analytic
functions of z which converges uniformly for z on the real axis.
An elementary theorem of the theory of functions of a complex
variable tells us that if this series converged uniformly in a
region of the complex plane having a piece of the real axis in its
interior, it would define a function f(z) analytic in the interior
of that region and hence having derivatives of all orders.®

*5. Discontinuous Functions.—It is interesting to note that
certain discontinuous functions may be defined by means of
rather simple formulas. For example, let

1 for z >0,
-1 for <0,
0 for z =0,

t Compare the remark following Theorem 8 in Sec. 2,

sgn
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Then

2 .. .
sgn z = ~ lim tan=! nz = lim tanh nz.

n

Moreover the function

(5:1) fx) = a + (b — a) lim sgn (sin? m'rx)

has the value a for « rational and the value b for z irrational.

In 1899 Baire introduced an interesting classification of dis-
continuous functions, which may be described as follows.®
Let the functions continuous on the set S constitute the class 0.
A function which is the limit on S of a sequence of continuous
functions but which is not itself continuous is said to belong to
the class 1. A function which is the limit on S of a sequence
of functions of class less than o, but which is not itsclf of class
less than «, is said to belong to the class . When the set S is
perfect and nonnull, it may be proved that there are functions of
class a for cach ordinal number « of the first or of the second
class.® For example, the function sgn z is in the class 1, while
the function f(x) defined by (5:1) for a > b is in the class 2.
It may also be shown that there are functions not in any of the
Baire classes.®

We shall now show that every semicontinuous function is in
Baire’s class 1, and in fact may be approximated by a monotonic
sequence of continuous functions. The theorem will be stated
only for the case of lower semicontinuous functions.

TuroreMm 30. Suppose that g(x) 1s lower semicontinuous on
the set 8. Then there exists a nondecreasing sequence (fn(z)) of
Junctions which are continuous on S, such that lim f.(z) = g(z)

m

on 8. When the function g(x) has a finile lower bound, the func-
tions fn(x) may be required to be continuous and the sequence to be
nondecreasing on the whole space.

Proof—By definition of lower semicontinuity, g(z) has only
finite values. We shall at first suppose that g(z) = L on §,

1 See Baire, Legons sur les fonctions discontinues, Paris, 1905.

? See Ia Vallée Poussin, Intégrales de Lebesgue, Fonctions d’ensemble, Classes
de Baire, pp. 145-151.

3 For a proof, see Hobson [1], pp. 264-274, 276.

4 Sec Sierpinski, Fundamenta Mathematicae, Vol. 5 (1924), pp. 87-91.
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where L is finite. Let
Jm(z) = glb. [g(z) + m|jxz — 2||] for zin 8.

Then it follows at once that L £ f,(z) < fus1(x) everywhere, and
fm(x) = g(x) on 8, so that the sequence (f.(z)) has a limit f(z),
and f(z) = g(z) on 8. To show that f,, is continuous, let = and
y be distinct points of space. Then for a properly selegted point
zin S,

9(2) + mlz — 2| < fu(@) + llz —yll, \
In(®) = 9@) + mly — 2l = g(&) + mly — 2| + |z =\l
< ful®) + (m + Dl — yl.

Since  and y may be interchanged in this argument, it follows
that
lfm(x) - fM(y)i < (m + 1)”"5 - y”

Finally, we wish to show that lim f,.(z) = g(z) on 8. There

exists a point z,, in S such that

(5:2) g(zm) + m”x - z,,.l] < fum(x) + 1/m,
and hence
o = zall < 3 [ ) + 4 = ot
< 1

[g(z) + 1- L]9

m

so that lim 2,, = 2. Therefore
m

g(z) = lim inf g(zn) < lim fu(x)

by the lower semicontinuity of g and (5:2). But it was already
known that lim f.(z) < g(z) on 8.

To care for the case when the function g is not bounded
below, we make use of the transformation

l
v=V({t)= T+
which is continuous and increasing and transforms the interval
(=, 4+x)into (—1,1). Obviously the inverse transformation



SEc. 5] DISCONTINUOUS FUNCTIONS 129

t = T(v) is also continuous and increasing. If we set v(z)
= Vlg(x)], then —1 < y(2) < 1 and v is lower semicontinuous,
so that by the first part of the proof there exists a nondecreasing
sequence (ém(x)) of continuous functions such that lim ¢.(z)

m
= y(z) on S. Obviously we may also suppose that —1 £ ¢, ()
< 1 everywhere. Now let ) e, be a convergent series of

numbers whose terms satisfy the conditions 0 < eni1 < €n < 1,
and set

Yo = ¢m + el(¢m+1 - ¢m) + e2(¢m+2 - ¢m+1) + -

This series converges uniformly, since 0 £ ¢ny1 — ¢ < 2, and
hence each y,, is continuous. Moreover G SVYm S ¥m1 S Y
on 8, and ¥u(z) = ¢u(x) when ¢n(x) = v(2), ¥m(x) > ¢u(z)
when ¢n(z) < v(z), so that we always have —1 < Y.(z) < 1 on
S. Then the transformed functions f,.(x) = T[¥n(x)] are all
continuous and approximate to the function g(z) in the required
fashion.

We shall next consider a theorem that has as a corollary a con-
verse of the last theorem.

TueorEM 3l. Let f(x, y) have for its domain the Cartesian
product ST, and let

u(x) = hm sup flzx, y) on S,
m(y) = hm mf fx,y) on T,

Ir=a

where u(z) and m(y) have finite values. Suppose, furthermore, that
one of these relations holds uniformly. Then

hm sup m(y) £ lim inf u(x).

r=a
Proof.—Consider the case where

lim sup f(z, y) = u(x) uniformly on S.
y'

Let ¢ > 0. Then

(6:3) 36 >03:2zinS.yin TN(b; 8) - D flz, y) < ulx) + ¢
(5:4) yinT:D:3y >0s:2in SN(a;v) D f(z,y) >m(y) — e
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Hence we find in succession,

yin TN(b; 8) .z in SN(a; v) - D m(y) < u(x) + 2¢,
(5:5) yin TN(b; 8) - D m(y) £ lim inf u(z) + 2,

lim sup m(y) < lim inf u(z).
¥=b x=qa

It is clear that in the theorem and the proof so far, the roles of
z and y may be interchanged. Then the case when the uniform-
ity holds for lim inf f(x, y) may be obtained from the cajf already
considered by replacing f by —/.

Theorem 31 has the following immediate corollaries. \

THEOREM 32. Let the functions [.(x) have domain S,\ and let
the sequence fum(x) be nondccreasing and bounded for each w in S.
Then

lim lim inf f,(x) < lim inf lim f,(z).

TuaroreM 33. Let the functions f,(x) be lower semicontinuous

on 8, and let lim f,(zx) = g(x) on S, where g(x) is finite. Suppose

also that the sequence [,(x) ts nondecreasing or else thatl the con-
vergence is uniform on S. Then g(x) is lower semicontinuous on S.

There are of course similar corollaries involving nonincreasing

sequences and upper semicontinuous funections.
Exercise

This exercise provides a review of fundamental points in soms2
of the preceding chapters.

Make up correct definitions and theorems from the following,
by choosing the expression to be defined or the hypothesis
of the theorem from A to Z, and the definition or the conclusion
of the theorem from 1 to 30; for example, A-=-1; A. B -D-2;
C :~+3. Note that none of the statements given as examples is
correct. It is understood in the following that the functions
involved are real-valued. As usual, [a, b] denotes a closed
interval of the real axis, but the sct S and the interval [a, b]
have no relation unless otherwise specified.

1. e>0:D:3bin S» b in

A. The ordered field R has the Nic;e) . b c.

]?ede .d propc::ty. . 2. A real numbere¢s:.c £ 8:
B. The point ¢ is interior to .
the set S. e>0-DO-Fbin Sa»rb<ec

+ e



SEc. 6]

C.

D
E.
F

Qo

m® O

The set S contains none of
its accumulation points.

. The set S is the sum of the

open sets E,.
The greatest lower bound
of a set S of real numbers.

. Theset S = A + B, where

A and B are nonnull and
have no points in common,
and 4 is closed.

. The sct S is connected.

The set S = A + B, where
A and B are nonnull open
sets and have no points in
common.

. The linearly ordered set €

has the Dedekind property.
The point ¢ is an accumula-
tion point of the set S.

lim f(xr) exists and is

finite, where f(r) is defined
on S.

. lim inf f(z) = — .

S is bounded and closed,
and f(x) is continuous on S.
f(x) has a continuous de-
rivative on the interval
[a,b].

f(z, y) has finite partial
derivatives df/dx and of/dy
at the point (x1, y1).

f(z) is continuous on the
interval [a, b].

f(z) has an antiderivative
on the interval [a, b).
fl@) <u < f(b).

f(x) has only a denumer-
able infinity of discontinui-
ties on the interval [a, b].

DISCONTINUQUS FUNCTIONS

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.
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. The set S is disconnected.
. All the points of S are

isolated points.

. The point ¢ is not an exte-

rior point of the set S.

. Every subset S of @ which

has a lower bound has a
greatest lower bound.

. The ordered field N is

Archimedean.
de > 03 N(c;¢) C 8.
The set S is open.
The set A contains a point
of accumulation of the set
B.
€e>0:0:36>0s:zin
SN(c; 8).z" in SN(c; &)
D |f@) = f)] < .
€e>0:D:35>0s:zin
S.z in SN(z;8) - D-
If(@) — f(eN)] < e
There is a point x, between
a and b such that f(zg) = u.
J(x)is Ricmann-integrable
on [a, D].
e>0-D-3z in N(c; ¢)
» flr) P — 1/e.
f(r) has a maximum and
a minimum on the set S.

lim f.(x) exists and is
x=b
finite.

The series Z Ifa ()| con-

ne=1
verges uniformly for z in
S.
lim g(z) and lim lin; Ju()
r=b n=c r=

exist and are equal.
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T.
U.

V.

W.

UNIFORM CONVERGENCE

f(z) is bounded on [a, b].
For each n, f.(x) is continu-
ous in z for z in S.

For each n, f.(x) is continu-
ous in z uniformly with re-
spect to z in S.

fa(x) converges to g(x) as
n approaches «, uniformly
for z in S.

f+(x) is continuous in z on
S, uniformly with respect to
n.

For each n, lim f.(r) exists
zr=b

and is finite.

Every rearrangement of the
..'."

series Z fa(x) converges

uniformly for z in S.

20.

21.

22.
23.
24.

25.

26.

27.

28.

29.

[CHaAP. VII

If S is an interval [a, D),
and each fn(z) is Riemann-
integrable on [a, b], then
g(x) is Riemann-integrable
on [a, b], and

lim [ fude = T

n= o
©

lim ) Ja(x)

e){ists and is
r=b

n=1
finite. \

g(x) is continuous on S.
S(z, y) has a diﬁercntial
at (x1, ¥1). '

AM s:z in [a, b].2’ in
la, b]-D-lf(®) — f@")| =
Mz — o'|.

The sum of the series

2 Ju(x) is eontinuous on
n=1

S.
zinS.e>0:0:36 >0
a:n.r in SN(z; 8)-D-
[fa(@") — falz)] < e
e>0:D:3ps:n>p.x
inS-2-|falz) — g(@)| <e
e>0:D:Apaxm>p.
n>p.xz in S-2-
[fm(@) — fa(@)| <e

n.z in 8.e>0:D:38
>0 32" in SN(z; 8)-D-
Fa@) — 1a@)] < e

30.- n.e>0:0:35>05:zin

S.2” in SN(z;
[fa(@) — fa(@)] < e

9 D
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CHAPTER VIII
FUNCTIONS DEFINED IMPLICITLY

1. Introduction.—The need for theorems justifying the exist-
ence and properties of functions defined implicitly byt means of
an equation or a system of equations is illustrated by the follow-
ing examples in which the desired properties fail to\hold. If
gz, y) = 2+ y* — 2, then ¢(0, 0) = 0, but the \equation
g(z, ¥) = 0 has no real solution for y when z has a value different
from zero and less than one. If g(z, y) = (y — 22 — 25, we
find that the equation g(x, y) = 0 has two real solutions for y
when z is positive and none at all when z is negative.

In Sec. 2 we shall give conditions justifying the existence and
uniqueness of the solution y = ¢(x) of an equation or system
of equations g(z, y) = 0, near a given initial solution such as the
point (0, 0) in the above examples. The method of proof we
shall use is an extension of Newton’s method for the solution of
numerical equations, with a slight modification. If y, is a first
approximation to a root of the equation ¢g(y) = 0, then under
certain conditions a better approximation is given by the formula

— 9(yo)
Y Yo — g (yo)
and the sequence (y), where
: = _ 9ym)
(ll) Ymi1 Ym :,/(yo)’

converges to a root of the equation. It is convenient to set

@)
1:2 =
(1:2) f ()] Yy — g (yo)
Then the formula (1:1) becomes Ymi1 = f(¥m), and in terms of the
function f the method becomes one of successive substitution.
This method of successive substitution is very widely applicable,
since it may also be used to show the existence of solutions of
134
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differential equations, integral equations, and systems of equa-
tions with infinitely many unknowns, and the variables in these
cases may be either real or complex. However, other methods
could be used equally well to obtain the theorems of the present
chapter. When the variables are complex and the functions
involved are all analytic, the theorems obtained by the method of
successive substitution show that the solutions are also analytic
functions. These solutions may therefore be expressed as power
series whose coefficients may be determined by the usual formal
methods without any need for a supplementary proof of converg-
ence by the usc of dominant series.

Sections 3 and 4 contain theorems on the extent of the domain
of definition of implicit functions, and Sec. 5 contains theorems
in which neither a Lipschitz condition nor differentiability are
assumed.

2. Solutions Defined near an Initial Solution..—The first
theorem we shall give is concerned with conditions under which
the method of successive substitution yields a sequence converg-
ing to a solution. In it the function f is supposed to have
values in the same space as its argument y, and this space may
have any finite number of dimensions. The points at infinity
are omitted from space throughout this chapter. The notation
lyll of Chap. V, See. 2, is used for max |y®|.

TuEOREM 1. Let f(y) be defined on a neighborhood N (yo; @),
and suppose there is a number K < 1 such that for cvery pair of
points y; and ya tn N(yo; @),

(2:1) 17y2) — fl)l = Kllys — ll.
Suppose also that
(2:2) If o) — woll < (1 = K)a.

Then there is a unique point y in the neighborhood N (yo; a) such
that y = f(y).
Proojf.—Let y1 = f(yo), Ym+1 = f(yn). Then

2:3)  [[Ymir — Ymll S Kllym — Ymaall = E*[lys — woll,

provided all the approximations up to y. lie in the neighborhood
N(yo; @). But then we have
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@) Nyms = ol £ ) g = wll S g = wll ) K
i=0 i=0

llys — yoll

<=k <@

80 that ym+1 lies in the neighborhood and may be used to define
the next approximation. From (2:3) we see that the series

(Ym+1 — Ym) is dominated by a geometric series J&hich con-
verges. Hence the sequence (yn) converges to a limit y, which
lies in N(yo; a) by (2:4). Since [ is continuous by (21), f(ym)

converges to f(y), and so y = f(y). If there were another solu-
tion 7 in N (y,; a), we should have by (2:1), :

ly — 9l = Klly — 3l <ly—7l,

which is impossible.

A function satisfying (2:1) is said to satisfy a Lipschitz condi-
tion with constant K. From the Theorem of the Mean it is
clear that this condition is satisfiecd when each component of f
has continuous first partial derivatives with respect to the k vari-
ables @ each of which is not greater than K/k in absolute value
for y on the neighborhood N (y,; a).

In case the space of the variable y is one-dimensional, the
solution of the equation y = f(y) corresponds to finding the
point of intersection of the curve z = f(y) and the line z = y.
Some of the possibilities that may occur are indicated in the
accompanying figures. The line AC in Figs. 1 to 3 has slope K

¥4 zZ

]
4 ]
]
; [ 1 B
v ‘
L %
K A Kta Y )
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Z 2=fly) z
B A,
D
z2=fly)
z=y
C

' ]

: |

A ' i

| 1 |

i ! ! |

1 Y 1 1
Yo Yta B Yo N % Y

Fig. 3 Fig. 4

and, in casc the function f(y) has a derivative, the Lipschitz
condition (2:1) in the theorem implies that the slope of z = f(y)
is numerically not greater than K on the interval (yo — a, yo + a).
This condition fails to hold in Fig. 4. The condition (2:2) of
the theorem requires that the segment AB shall be less than CD.

Note that in case @ = 4+, the condition (2:2) may be
omitted.

The following examples illustrate possible determinations of
the constants ¢ and K in Theorem 1.

A. y=19y*—y* 4+ 0.1. Herewemaytakey, = 0.1,a = 0.1,

K = 0.4.
B. y =cosy — 0.8. Here we may take yo =0, a = 7/6,
K = 0.5.

C. y=e —2. Herewemaytakey, = —2,a=1K =1/e.
D. y=43cosy. Here a = +«, K = %, and we may take
Yo arbitrarily.

In case the function g(y) has a continuous second derivative,
let M (d) denote the maximum of |g"”’(¥)|/|¢'(yo)| on the interval
Yo —d Sy < yo + d. Suppose d can be so chosen that

: 2 lg' (o),
@) a = M@ <0
Then since f'(y) = 1 — ¢'(y)/¢' (o) = (Yo — ¥)9" @)/ (yo), where
7 lies between y, and y, the function f defined by (1:2) satisfies
the conditions of Theorem 1 with a = 1/2M(d), K = %, and
hence the sequence defined by (1:1) converges to a solution of the
equation g(y) =
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If we modify example A to
y=v'—-y -3

we find that Theorem 1 is not applicable directly. However,
conditions (2:5) are fulfilled by g(y) = y* — y*> — y — 3 with
y0_2 d= %)]t[(d) T:a_l:%b

We are now prepared to prove what is properly called an
“implicit function theorem.” In its statement, x{ and y are
variables in spaces of one or more dimensions, and y(z, y) is a
function with values in the same space as its argument y. The
symbol g,(z, y) then stands for the square matrix whose elements
are the partial derivatives of the components of g with yespect to
the components of y. Similarly the symbol g.(z, y) also stands
for a matrix of partial derivatives, but it need not be square.
We shall use the usual notation of matrix theory for matrix
multiplication, treating z, ¥, and g as matrices each consisting
of one column. Thus, for example, the notation g,(y1 — y2)
stands for the matrix the elements of whose only column are

8y0> (y‘n 4$"). The determinant of the matrix g, will be

denoted by det g,.

TaeorREM 2. Suppose that g(x, y) is of class C™ on an open
set W of xy-space, and that g(z,, yo) = 0 while det gy(xo, yo) # 0
at a point (xo, yo) of W. Then there exist neighborhoods N(xo; b)
and N(yo; a) and a function ¢(x) defined on N(xo; b) such that
for every x in N(xo; b), det g,(x, ¢(x)) # 0, and ¢(x) is the only
solution in the neighborhood N (y,; a) of the equation g(x, y) = 0.
Moreover, $(x) 1s of class C™ on N (zo; b).

Proof —For simplicity we shall first take up the case when
both variables z and y lie in one-dimensional spaces. Let

(2:6) f@y) =y - gu((;;, ?;/)o)

Then the equation y = f(z, y) has the same solutions as g(z, y)
= 0. Also f has a partial derivative with respect to y which is
continuous and vanishes at (xo, o). Hence there exist positive
numbers K, a, b, and ¢, with K < 1, such that for z in N(zo; b)
and y, 1, ¥2 in N(ye; @), (z, ) is in W, and
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(2:7) lgu(z, 9)| = ¢,
@28) F@y) — Syl = (e y2 + 601 — y2)llys — gl
‘ < Ky — w3,

[f(x, yo) — yol < (1 = K)a.

Thus the existence and uniqueness of the function ¢(z) follow
from Theorem 1. We may show that ¢(z) is continuous without
assuming the existence of the partial derivative g,. For, with
the help of the Theorem of the Mean, we have

(2:9) 0 = g(x1, ¢(x1)) — g(z, ¢(x))
= g(z1, $(z1)) — g(x1, $(x)) + 9(z1, (x)) — g(z, $(2))
= gu(xh ¢(11) + 0A¢) A¢ + g(xly ¢($)) - g(‘T; ¢($)),

where A¢ = ¢(x1) — ¢(z) and 0 < § < 1. Sinee |g,(x, ¥)| = ¢
> 0 and g(z, y) is continuous, ¢(x) is also continuous. If the
partial derivative g, exists and is continuous, then from (2:9),
writing Az for x; — x, we have

(2:10) 0 = gy(x1, ¢(x) + 6 A¢) Ad + go(x + 0, Az, ¢(x)) Az.
Hence A¢/Azx has the limit

. oy el $(2))
(2:11) ¢ 9.(x, ()’

and ¢(x) is of class C’. If g is of class C™ and ¢ is of class
Ct=1 then the right-hand side of (2:11) is of class C™ P, by
Theorem 15 of Chap. V, and hence ¢ is of class C™.

The meaning of the theorem for the case just considered may be
visualized by considering the graph of the equation z = g(z, y).
When this graph intersects the xy-plane at a point (zo, yo)
where the tangent plane is not parallel to the y-axis, then the
graph intersects the zy-plane in a curve passing through (zo, yo)
which defines y as a single-valued function of z.

Let us return now to the general case, and set”

Az, y1, y2) = j;l 9u(x, y2 + t(y1 — y2)) dt.

At points where the matrix A(z, ¥, y2) is nonsingular, let B(z,
¥1, ¥2) denote its inverse or reciprocal. By Theorem 17 of

In this formula involving the integration of a matrix, it is understood
that each element of the matrix is integrated separately.
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Chap. VI,
9(z, y1) — gz, y2) = A=, y1, y2) (Y1 — y2).
Then in the preceding proof let us replace formula (2:6) by
Sz, y) =y — B(xo, yo, yo)g(x, ¥)

and make corresponding alterations in the remainder of the proof.
Inequality (2:7) is replaced by

(212) ldet A(I, Yy 3/2)‘ 2 Cy

and we note that then the elements of the matrix A(.L n, yz)
are continuous and bounded for x in N(x; b) and y; and Y2 in
N(yo;a). Formula (2:8) is replaced by

Ifx, y1) — flz, y)|| = llyr — ¥2
— B(xo, yo. yo)A (£, y1, y2) (11 — y)|
£ Ky — vl

and (2:9) is replaced by

0 = A(zy, ¢(x1), $(x)) Ad + g(x1, &(x)) — g(x, $(2)),
from which we obtain
(2:13) A¢ = —B(zy, ¢(z1), ¢(x))lg(r1, ¢(x)) — g(r, ¢(x))].
If we set

Clos 7, 1) = [ gx + e = 20, ) d

we obtain
(2:14)  A¢ = —B(xy, ¢(x1), ¢(2))C(xy, 7, ¢(x)) Ax
from (2:13), so that (2:11) is replaced by the matrix formula
(2:15) ¢:(z) = —B(z, ¢(x), ¢())C(x, 7, ¢(x)).

Since the elements of the matrix B are rational functions of the
elements of A, with denominator bounded from zero by (2:12),
the argument that ¢ is of class C™ is completed as before.  Note
that formula (2:15) is equivalent to the system of equations

g=(x, ¢(x)) + gu(z, ¢(x))¢:(x) = 0.

It is clear that the above proof proceeds on the basis of the
fact that for each z near z, yo is a sufficiently close approxima-
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tion to a solution for Theorem 1 to be applicable. Thus we see
that it is not essential to have an exact initial solution (z,, ys).

In the following examples the variables x and y are both in
one-dimensional space. In each case except G an initial solution
corresponding to x = 0 may be considered.

gz, y) = +y*—1=0.

glz,y) =2+ y* = 0.

gz, y) =z*+y*+1=0.

gz, y) =sin?y —x 4+ cos’y — 1 = 0.
g(x, y) = y* — xsin (1/x) = 0.

gz, y) =y*> —axsin (1/2) — 1 = 0.

o Qe

In these examples the question of the existence of a solution and
its properties when it exists may be settled by elementary con-
siderations. To some of them Theorem 2 is applicable, to others
not. We recall that the proof of Theorem 2 shows that every-
thing but the differentiability of the solution may be secured
without the existence of the partial derivative g,. In the next
three examples the existence and properties of the solution would
not be obvious without the help of Theorem 2.

K. g,y =sin(zx+y) —ev+1=0.

L. g(z,y) =sin (x 4+ y) —e¢v 4+ 1+ zysin (1/z) = 0.

M. g(x,y) =log (1 + 2+ y) — tanh xy = 0.

3. Maximal Sheets of Solutions.—It is sometimes desirable
to have information about the extent to which a solution y = ¢(z)
of an equation g(z, ¥) = 0 may be continued. The theorems to
be proved in this section are designed to give information of this
type. In Theorem 3 we shall be considering equations g(z,y) =0
of the same type as thosce considered in Theorem 2, but for its
statement we shall need to define some additional concepts.

A sheet of points in xy-space is defined to be a connected set
W, of points w = (x, y) with finite coordinates such that, for
every point wy, = (xo, yo) of Wo, there exists a neighborhood
N(wo; @) such that no two points of Wo in N(wo; a) have the
same projection z; and for every w, in Wo and every a > 0, there
is a neighborhood N (xo; b) each of whose points x is the projec-
tion of a point w of Wy in N(wo; a).? It is clear that in a

! This definition of a sheet of points is somewhat more restrictive than
the one introduced in Bliss [4], p. 22. It corresponds to his ‘“‘connected
sheet consisting only of interior points.”



142 IMPLICIT FUNCTIONS [Cuae. VIII

sufficiently small neighborhood of each of its points a sheet
determines y as a single-valued continuous function of 2. Con-
versely, if y = ¢(z) is continuous on an open connected set, then
its graph is a sheet. Furthermore, a shect is necessarily arcwise
connected.

For example, in case z and y represent points in spaces of one
dimension, a sheet of points according to the above definition
corresponds to a single-valued continuous function y = f(z)
defined on an open interval ¢ < £ < d. The set of pdints on the
circle 22 4 y2 = 1 is not a sheet, but removal of thq points of
intersection with the z-axis divides the sct into two sheets. In
case the z-space has two dimensions and the y-space has one
dimension, the helicoidal surface y = ¢ tan=! (z,/x;) is a sheet.
The sphere x} + z} 4+ y2 = 1, on the other hand, is not a sheet,
but is divided into two sheets by removal of its intersection with
the plane y = 0.

A boundary point of a sheet W, is a point not belonging to
W, but every neighborhood of which contains points of W,.
This concept is not the same as that of boundary point of a set,
since every point of a sheet is a boundary point of the set of
points composing the sheet.

If the function g(z, y) is defined and of class C” for (z, ¥) in an
open set W, then a point w = (z, y) is called an ordinary point
for g(z, ) in case wis in W and the matrix g,(z, y) is nonsingular.
All other points are called exceptional points.

TuroreEM 3. Let wo = (xo, Yo) be an ordinary point for g(x, y)
and a solution of the equaiion

g(z, y) = 0.

Then there is a unique shect Wy of solutions of this equation with
the properties

A. W, contains wy; -
B. Every point of Wy is an ordinary point;
C. The only finite boundary points of Wy are exceptional points.

Proof —The existence of a sheet W, having properties A and B
follows from Theorem 2. Let W, be the logical sum of all such
sheets W,. Then W, is connected and is a set of solutions having
properties A and B. Moreover, from property B and Theorem 2
it follows that W, is a sheet. Let w; = (21, y1) be a boundary
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point of W, and an ordinary point for g(z, y). Since g is con-
tinuous, g(x1, 1) = 0. Hence by Theorem 2, the sheet W, could
be extended to include the point wi, and properties A and B
would still hold. This contradicts the definition of W, and
consequently W, has property C. To show that there is only
one sheet having these propertics, suppose another sheet W,
has the same properties. Then W, must be contained in W,.
If A = Wo — W2is not null, we find that W,4’ = 0 by Theorem
2, and AW, = 0 by property B for W, and property C for W,.
But this contradicts the connectedness of Wo.
As an example, consider the equations

Yi—y; — 11 =0,
2y1y2 —.’1'2-:0.

The functional determinant is

2y —2y, _ 2 2
2. 2 =y + ?/2)7

which equals zero only for y, = y2 = 0, £, = 2o = 0. There is
only one maximal sheet of solutions, corresponding to the Rie-
mann surface for the function y = 4/x, where y = y; + 1y,
z = x; + 1x.. However, if in the consideration of the equation
y? — z = 0, z and y are restricted to real values, there are two
maximal sheets of solutions, corresponding, respectively, to
positive and to negative values of y, and the point (0, 0) is a
boundary point of each. For the equation y? — 22 — 1 = (),
there are also two maximal sheets of solutions, having no finite
boundary points, when x and y are restricted to real values. For
another example, consider the equation

Btz +yr—1=0.

The exceptional points are those for which y = 0. The maximal
sheet of solutions through the point (0, 0, 1) is the upper hemi-
sphere while the maximal sheet of solutions through (0, 0, —1) is
the lower hemisphere.

A more general application of Theorem 3 is that to an equation
of the form

g(x, ¥) = a@y + ax@y* '+ - - - +auz) =0,

where the functions a;(z) are polynomials. If x and y are per-
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mitted to be complex variables and the polynomial g(z, y) is
irreducible, there is only one maximal sheet of solutions, and
its only finite boundary points correspond to the solutions of
the equation D(zx) = 0, where D(z) is the discriminant of g(z, y)
regarded as a polynomial in y. One or more of the values of y
becomes infinite at the points where ao(x) = 0. A variety of
situations may arise when z and y are restricted to be real, as
has been indicated by some of the preceding examples. Let us
suppose, for instance, that the cocfficients of g(z, y) are real, that
the equation ao(x) D(r)= 0 has no real roots, and Ehat there
are exactly k distinet real solutions (@1, 1), (x, [2)y + e s
(z1, yx), corresponding to a particular initial value of &. Then,
when r and y are restricted to be real, there are k maximal sheets
of solutions cach of which determines s single-valued function
of z defined on the whole z-axis. A speeial example of this is
afforded by the cquation

P+ Dy = (P +3)y+1=0,

which has three distinct real roots for each real value of . Its
graph consists of three curves which do not intersect.

4. An Extended Implicit Function Theorem.-—(Compare Bliss
[4], pages 19-21; Bolza [5]). There are cases in which one wishes
to apply an implicit function theorem when an initial curve of
solutions is given. Such an oceasion will arise in the next
chapter, when we consider an embedding theorem for systems of
differential equations that are not solved for the derivatives.

THEOREM 4. Let W* be a bounded closed sct in the xy-space
with projection X* on the x-space, and suppose each point x tn X*
18 the projection of only one point (x, y) in W*. Suppose also
that each point of W* 48 an ordinary point for g(x, y), and that
g(z, y) = 0on W*. Then there exist posilive numbers a and b and
a function ¢(x) such that

(a) ¢(x) is of class C’ on the neighborhood N(X*; b);

(b) For every x in N(X*; b) the point (z, $(x)) s the unique solu-
tion in the neighborhood N(W*; a) of g(z, y) = 0.

Proof.—We first show that there is a neighborhood N(W*; a)
in which there do not exist two solutions with the same z. If
not, there would exist distinct solutions (x., ¥n), (T., ¥,), in
every neighborhood N(W*; a,) with a, = 1/n, and the two
sequences (Z,, ¥») and (z., ¥,) would have a common accumula-
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tion point (z, y) in W*. But by Theorem 2 there is a neighbor-
hood of (z, y) in which the solution is unique. To show that the
solution ¢(z) is certainly defined on a neighborhood N(X*; b),
we may apply the Heine-Borel theorem, since the projection X*
is also bounded and closed. By Theorem 2 the solution ¢ is
defined and of class C’ on a neighborhood N(z; ¢) of each point
z of X*, but the value of ¢ may vary with z. Since the family
of neighborhoods N(z; ¢/2) covers X*, there is a finite subset
N(x1; ¢1/2), . . ., N(z«; c/2), which also covers X*. Let b
be the least of the positive numbers ¢,/2, . . ., ¢/2. Then
each point x in N(X*; b) is in one of the neighborhoods N (x;; ¢,)
where the solution ¢ is surely defined.
As a simple example, we may consider the equation

y: 4+ xyues — 1 =0,

where the variables are all regarded as real.  ITach maximal sheet
of solutions is single-valued, and its projection is bounded by
the hyperbola zr; = 1. As an initial set W*, we may take a
segment ¢ £ 1 £ dy, r2 =0, y = 1. The size of the neighbor-
hoods N(X*; b) and N(W*; a) guaranteed by Theorem 4 obvi-
ously depends on ¢; and dy, and it is clear from this example why
the set W* in the theorem is assumed to be bounded and closed.
Another cxample in which the properties are not obvious is
afforded by the equation

sin (1‘1 -+ y) — ¢ + TiXe + 1= 0’

with the initial set of solutions ¢y £ 2y £ dy, 22 =0, y = — 11

*The following extension of Theorem 4 is readily proved,
again with the help of the Borel theorem:

*TurEoREM 5. Suppose that g(x, y) = 0 on the bounded closed
set W* in xy-spacc and that each point of W* is an ordinary
point for g. Then there is a finitc number h of maximal sheets of
solutions Wy, + + +, Wy such that W* C Wi+ * + - + Wa.
Moreover, for every positive number a there is a positive number b
such that N(x; b) s contained in the projection of the part of one
of the maximal sheets Wi, - = + , Wy contained in N(w; a) when-
ever w = (z, y) is a point of W*. When W* is also connected,
h =1,

*6. Implicit Function Theorems without Differentiability.—
Theorem 1 was concerned with the existence and uniqueness of a



146 IMPLICIT FUNCTIONS [Crar. VIII

fixed point or invariant point for a transformation f(y). The
next theorem yields the existence of a fixed point (but not its
uniqueness) on the basis of weaker conditions than those of
Theorem 1. The proof is somewhat more complicated and
involves some elementary concepts of topology.

A simplex S in k-dimensional space R* is determined by a
set of k + 1 vertices po, p1, - * *, pr, which do not lie in a
(k — 1)-dimensional hyperplane, and S consists of a}l points

=

(5.]) Yy = z ¢iDs,
1=0
for which
k
az0, }‘ G =
1=0

When k = 1, a simplex is a closed interval [po, p1]. Fork = 2,a
simplex consists of the points within and on a triangle. Fork = 3,
a simplex consists of the points within and on a tetrahedron.

A side of S is determined by choosing a subset of its vertices
and consists of the points given by (5:1) for which certain of the
¢; are kept equal to zero. A side will be denoted by its vertices,
and the simplex S itself will be regarded as a side when con-
venient. Thus when k = 3, the sides of a tetrahedron consist
of its vertices, edges, fuces, and the tetrahedron itself.

Any point ¢ = z d.p: of 8, not a vertex, determines a simplicial
partition of S into subsimplices T;, where T'; has ¢ as a vertex
in place of p,. (When ¢ is on a side of S not containing p,, the
corresponding 7, is not present.) It is clear that a point belong-
ing to a subsimplex 7; also belongs to 8. To show that every
point ¥ of 8 given by (5:1) belongs to some subsimplex 77, let

v = minimum (¢;/d;), and let u; = ¢; — vd;. Then vg + zu.p;

=zc,-p,-,u;_2_0,v+2u,~ = 1, and at least one w; = 0. This
subdividing process may be repeated as often as is desired, with
the proviso that each new vertex ¢ is to be used to subdivide
each simplex to which it belongs. The result of a finite succession
of such subdivisions will also be called a simplicial partition and
will be denoted by x. It is clear that the maximum diameter of
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a subsimplex of S may be made arbitrarily small by choice of
a suitable simplicial partition .

For two-dimensional space, Fig. 1 illustrates a partition that
is not simplicial because ¢, and g, are not vertices of every sub-
simplex to which they belong, while a simplicial partition using
the same vertices is given in Fig. 2.

We shall be intercsted in the properties of a function u(q)
defined for every vertex ¢ of a partition = of S, taking only the
values 0, 1, . . . , k, and such that whenever ¢ lies on a side

g,
. 1.
(12
Fia. 2.
(Proy oy - - -, D) Of S, u(g) has one of the values o, 2y, . . . , tm.
A subsimplex T in 7 is called a p-simplex in case the set of values
of u(q) for ¢ ranging over the vertices of Tis[0,1, . . . , k]. A

(k — 1)-dimensional side U of a subsimplex in = is called a
u-side in case the set of values of u(g) for ¢ ranging over the
vertices of U is [0, 1, - - -, k — 1]. In Fig. 3 is shown a sim-
plicial partition of a triangle S, with vertices labeled with the
values of a function u(g), and with the single u-simplex present
shown by the heavy line. There are two w-sides, but only one
of these lies on the boundary of S. This figure illustrates some
of the possibilities that must be considered in the proof of Lemma
1.

LemMA 1. For every simplicial partition w of S the number of
u-stmoplices is odd.
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Proof —The statement is easily seen to be true for one-dimen-
sional space. Now let p be the number of u-simplices, let ¢ be
the number of u-sides lying on the boundary of S, and let a(T)
be the number of p-sides of an arbitrary subsimplex T of .

Fra. 3.

If T is a p-simplex, a(7) = 1, while if 7 isx not a p-simplex,
a(T) = 0or 2. Hence

p = z a(T) (mod 2).
Since every u-side appears once in this sum if it lics on the
boundary of 8, and twice if it does not, we have also

o= 2 a(T) (mod 2).

Since all p-sides on the boundary of S must lic on the side (po,
Py, - . ., Pe-1), it follows that, if the statement holds for
(k — 1)-dimensional space, il holds for k-dimensional space.

Lemma 2. Let Ay, Ay, . . ., Ay be closed sels such that every
m-dimensional side (pi, Py, - . . 5 Din) Of the stmplex S is con-
tained in the sum A;, + A, + - - - + 4, form =0,1, - - -,
k. Then the sets A, have a common point.

Proof —For an arbitrary integer n, there is a simplicial par-
tition 7 of S for which each subsimplex has diameter less than
1/n. For each vertex g of , there is a side (pi, Diyy . - + , Dow)
of S of lowest dimension containing g. Then ¢ is in one of the
sets Ai, A, * - -, A;,, sayin A;. Then if we set u(g) = 1, the
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function u has the properties required for Lemma 1, so that there
is a u-simplex (g3, ¢7, . . ., ¢&) in 7. We may suppose the
notation for the vertices chosen so that u(q?) = 7, and thus ¢"
is in the set A,. The sequence (¢5) has a point of accumulation y,
which is also a point of accumulation of each sequence (g?), since
the diameter of (¢5, ¢, - . . , ¢3) isless than 1/n.  So the point y
is in each set A..

TueoreM 6. Suppose the function f on S to RF is continuous
on the k-dimensional stimplex S and transforms the boundary of S
into part of S. Then therc is a point y in S such that y = [(y).

Proof —If 8 has vertices po, p1, . . . , pi, every point y of the
space K* may be represented in the form

k k
Q! Q)
(5:2) y = 2 P, Z 6 =1,
i=0 i=0

the points of S being characterized by the additional conditions
¢, 2 0. Moreover, the coefficients ¢, are continuous functions
of y, since the equations (5:2) have the determinant of the
coefficients of the ¢, different from zero when the points p; deter-
mine a k-dimensional simplex. Hence the equations

k k
@) =) dpn ) d=1,
1=0 =0

determine the ¢, as continuous functions of y. Thus if we let

A, denote the set of all points y for which ¢ < ¢, each set

4; is closed. If y is a point of a side (pi, Py, - . ., Pu), then
m

m

n
z ¢, = 1, and also Z ¢, £ 1 since ¢; = 0 when y is on the
j=0 ;=0

m k

boundary of 8, and m = k and 2 ci= z ¢; =1 when y is
j=0 i=0

interior to S. Thus ¢, < ¢, for at least one value of j, so that

the sets A, satisfy the conditions of Lemmak2. A c(,:mmon point

of all the sets A, must have ¢, = ¢, since z ¢ = Z ¢ =1
i=0 i=0
Theorem 6 has an immediate extension to the case when f
is on a bounded closed set 7' to R, and there exists a continuous
function g on T' + f(T) to R, having a single-valued inverse, and
such that g(T) is a simplex S. Extensions of the theorem to more
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general metric spaces than R* have been obtained by various
writers.(Y  Existence theorems for differential equations follow
from such a fixed-point theorem for the space G of continuous
functions.® There are also more complicated theorems on fixed
points for continuous transformations of manifolds that are not
topologically equivalent to a simplex.®

In case the transformation f in Theorem 6 depengs also on a
parameter z, the equation y = f(z, y) determines a function
¥ = ¢(x), which may however be multiple-valued, sd that noth-
ing can be proved about its continuity. However,\ when the
solution y = ¢(x) of an equation g(x, y) = 0 is kn)i)wn to be
single-valued, its continuity may be proved under rather general
conditions, given in the following theorem:

TaeorEM 7. If the function g(x, y) is conlinuous on the
bounded closed set W, in xy-space and if for cach x in the bounded
closed set S, y = ¢(x) is the unique solution of the equation g(r, y)
= 0 having (z, y) in Wy, then ¢ s continuous on S.

Proof —By the first condition in Theorem 25 of Chap. IV,
the set of all solutions of g(x, ¥) = 0, lying in W, and having
z in 8, is bounded and closed. By the third condition of the
same theorem, ¢(x) is continuous.

If, for example, f is continuous on a bounded closed set S
and has a single-valued inverse, then f-! is also continuous.
When 8 is one-dimensional and f is properly monotonie, f-! is
obviously single-valued. Examples, such as f(y) = 1/y for
1sy<w, f0)=0, or f() =y for 0 <y < I, f(—1) =0,
f(2) = 1, show that f~! need not be continuous when 8 is not
closed.
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CHAPTER IX
ORDINARY DIFFERENTIAL EQUATIONS

1. Conditions Ensuring the Existence of Solutions.—In the
following we shall let x denote the single real independent
variable, and let y denote the dependent variables, of which
there may be any finite number. Derivatives with respect to 2
will be denoted by accents. Thus a system of differential equa-
tions involving only first derivatives may be written in the form

(1:1) F(z,y,y) = 0.

An equation or a system of equations involving derivatives of
higher orders may always be reduced to a system of the form (1:1)
by the introduction of new dependent variables. For example,
oonsider the equation

(1:2) y' +a¥y = 0.

If we set y1 =y, y2 = ¥, equation (1:2) is equivalent to the
system

(1:3) Y1 = Y
Yo = —a%u.

We shall begin by considering systems of the form
(1:4) y =z, 9),

in which the derivatives are expressed explicitly as functions
of z and y. Here it is understood that the number of equations
is the same as the number of dependent variables y which are to
be determined as functions of z. If there is only one equation
and one variable y, the equation (1:4) may be pictured as attach-
ing to each point in a region of the zy-plane a line whose slope
is f(z, y). The problem of solving the differential equation is
that of finding a curve having as its tangent at each point the
line attached to that point. The extension of this geometrical
interpretation to more dimensions is immediate.
151
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By a solution of (1:4) we shall mean a differentiable function
y(z) defined on an (open or closed) interval (a, b) and such that
y'(x) = f(x, y(x)) identically on (a, b). The set of all points
(z, y(x)) with z on (a, b) is called the graph of the solution.
There will in general be infinitely many solutions. If we adjoin
to the differential equation (1:1) initial conditions of the form
y(£) = 9, then the solution on an interval (a,b) containing £ is
uniquely determined, provided the funetion f has sgitable prop-
erties. The requirement that the solution shall\satisfy the
initial condition y(&) = 5 is expressed geometricallyy by saying
that the graph of the solution shall pass through the point (£, 7).
We shall be interested in studying the properties of the solution
as a function y(x, £, 7) of x and these initial values. The variables
£ and 5 constitute a speeial choice of the constants of integration,
convenient for theoretical purposes. In a sufficiently restricted
domain the complete family of solutions is obtained with the
value of ¢ fixed. In the first theorem to be proved the domain
of the function f is assumed to have a special shape.

TuroreMm 1. Suppose that f(x, y) is continuous in x and thal
there exists a constani K such that

(1:5) 17, 4) — f(x, y)|| £ Klly — vl
for all values of z, y, and y; with a £ x £ b.  Then there exists a
unique family y(x, & n) of solutions of the differential equations
(1:4), defined for all x and & on the interval [a, b] and for all n, and
such. that
y(& & n) =

Moreover, the functions y(x, £, 1) and y'(x, & n) are continuous.

Proof — It is clear that f is continuous in x and y together,
since by the Lipschitz condition (1:5) it is continuous in y uni-
formly with respect to z. Now define a sequence of functions
by successive substitutions as follows:

yo(x, & "7) ="
Ymia(t, Em) = 1+ [ S5, ym) dz, m=0,1,2,

By Theorem 9 of Chap. VII, the functions y.(z, £, 1) are continu-
ous for z and £ on [a, b] and # arbitrary. For each number N
there exists a @ such that

”yl(x; £ n) — yO(x, £ "7)" =@

(1:6)
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on the region Ry consisting of all z and £ on [a, b] and all  with

Ilnll = N. Then it may be shown by use of the Lipschitz
condition (1:5) and induction that

lYmir — yml £ QK™|z — £]m/m!

on Ry. Since the series 2 QK™(b — a)™/m! converges, it follows

from Theorem 17 of Chap. VII that the sequence (y.(z, £ 7))
converges uniformly on Ry. Since N may be chosen arbitrarily
large, the limit y(x, £ ») is defined for all values of 7 and is a
continuous function of its arguments, by Theorem 6 of Chap. VII.
Also f(z, ym(x, & 7)) converges uniformly to f(z, y(x, & 7)) on
Ry, and so by (1:6) and Theorem 7 of Chap. VII,

y(o, & 1) = 1+ lm [ [, yalz, & ) do

=14 [y, & m) dx.

By Theorem 9 of Chap. VI we may differentiate (1:7) to obtain
(1:4), from which the continuity of y'(z, £ #) is obvious. The
uniqueness of the solution may be proved by supposing therc are
two solutions y(r) and z(x) corresponding to the same initial
values (£ ). Then

y=n+ [[fepd,  z=n+ [[f@2)dr

Let P = max [ly(x) — z(x)|| on [a, b]. Then by the Lipschitz
condition (1:5),

1:7)

ly@ - 2} £ K [ ly - 2l & < PKlz - &,
and by induction we find that
ly(x) — z()f| £ PK"|x = g"/m!

for every m, so that y(x) = z(x).

It is clear from the preceding proof that an arbitrary continu-
ous function of (z, £, 1) may be taken as the initial approximation
Yo(z, £, n) in place of the special choice indicated in (1:6). When
this method of approximation is being used for numerical compu-
ioa,tion of a solution, a suitable choice of yo(z) may save much
abor.

Before proceeding to an extension of Theorem 1, we consider
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some examples. A most important class of equations to which
Theorem 1 is applicable is the class of linear equations. We
shall write a system of linear equations in the matrix notation
(1:8) ¥ =A@y + c(z),

where A is a square matrix of continuous functions of z, defined
for z on the interval [q, b], ¢ is a matrix of only one column whose
elements have the same propertics, and y and ¥y’ 4re likewise
regarded as matrices having only one column. The\maximum
of the sum of the absolute values of the clements of A is effective
as a Lipschitz constant K in Theorem 1, though it is not\in gencral
the smallest one. \

In the following cxamples, the conclusions of Theorem 1 are
not all fulfilled. In each there is a single variable 3, and the
explicit solutions are easily obtained by elementary means. The
square roots indicated are all understood to be the positive
roots.

Ay = 24"

B. oy = 2ly|* sin 2.
C. ¢ =(1—y»*
D. y = (1 —y)™
E. ¢y =y

In example A the right-hand side is defined only for y = 0, and
fails to satisfy a Lipschitz condition on this domain. There are
infinitely many continuous solutions proceeding to the right from
any point on the z-axis, each composed of a piece of that axis
and the right half of a parabola y = (z — ¢)? but there is only
one solution proceeding to the left from such a point. In
example B the right-hand side is defined and continuous for all
values of z and y, and the solution fails to be uniquely deter-
mined either to the right or to the left if it ever becomes tangent
to the z-axis. Example C is somewhat similar to A, We notc
that distinet solutions can meet only at points where the Lip-
schitz condition fails. In example D the right-hand side has a
continuous derivative, and so a Lipschitz condition is satisfied in
the domain between the lines y = +1, and there is a unique
solution in the form

r—c

VT G- o
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through each point between these lines. None of these solutions
ever reaches either of the lines y = +£1, The conclusion of
Theorem 1 holds with the restriction that 5 shall lie in the strip
bounded by the lines ¥ = +1, but this conclusion cannot be
deduced from the fact that the hypotheses hold in this strip, as
is shown by example E. Here the function y? satisfies a Lip-
schitz condition on every finite interval of the y-axis, but each
solution y = 1/(c — z) has a discontinuity. According to
Theorem 1 this could not happen if the right-hand side satisfied
a Lipschitz condition on the whole y-axis.

The next two theorems are preliminary results useful in secur-
ing the continuity in the initial values and parameters of the
solutions described in Theorem 4. They also have applications
in more general situations.

TureoreM 2. Suppose that y(x) and z(x) are continuous
Sfunctions with pieccwise continuous derivatives on the interval
aZx=0b Suppose also that f(z, y) is continuous in x and
satisfies a Lipschitz condition in y, with constant K, on a domain D
containing the graphs of y(x) and z(x). Suppose finally that

(1:9) ly' (@) — 2'(x) — flx, y(x)) + f(x, 2(x)]| S e

at the points of [a, b] where y'(x) and 2'(x) exist and are continuous.
Then for cach £ and x on the interval [a, b], we have

ly@) — 2@ = lly®) — 2(§)lleFl=8 + '162 (K14 — 1).

Proof —Let p(z) = y(x) — 2(x). When z < §, we may use
the substitution = —u, so it is only necessary to consider the
case £ £ z. Then with the help of the Lipschitz condition and
(1:9), we find that

lp@) - p®l £ K [ lIpll de + & ~ ),

and so
10 1ol = 1@l + K [ (1ol + £} én
Let M = max ||p(z)|| on [a, b], and assume that

aan) [p@l = @1 + { 1@l + £ = = 1)
L MR = o,

n!
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This holds for n = 1, by (1:10), since eX==9 — 1 2 K(x — §).
By substituting (1:11) in (1:10) and integrating, we obtain (1:11)
with n replaced by n + 1. By letting n approach infinity in
(1:11), we obtain the desired conclusion.

TurorEM 3. Suppose that the functions y(z) and z(z) are
of class C' on the interval a £ x £ b, and that the functions f(x, y)
and g(z, y) are continuous on a domain D containing the graphs of
y(x) and z(x). Suppose also that on D, f(x, y) satzsﬁed a Lipschitz
condition in y, with constant K, and that

I7Cx, @) =
£z, 2(2)) — g(x, 2())]| S ¢,
Y@ = flx,y@), @) =gz, 2(2)),

on [a, b].  Then for cach &, &, and x on the interval [a, b], we have

ly@) — 2| £ {ly@ — 2(8)| + M|E — g]}ext=-d
+ ]‘; (eKle=8 — 1).

This theorem follows immediately from Theorem 2. From
it we sce at once that (granting the existence of the solutions) a
solution of 3" = g(x, y) will be near a solution of y' = f(x, y)
taking the same initial values, provided g(rx, ¥) differs but little
from f(x, y). Thus, for sufficiently small values of x, a solution
of the equation ¥’ = sin zy differs but little from the solution
y = Cer? (taking the same initial value) of the equation §' = ry.
Likewise for sufficiently small values of z, a solution of the equa-
tion 3’ = e+ with y(0) = % differs but little from the solution
with the same initial value of the equation 3’ = ¢*rtv,

The next theorem is concerned with the maximal extent of a
solution of a system of differential equations, with somewhat
relaxed conditions on f(x, ). It is convenient at this point to
introduce parameters « in the differential equations. If R
denotes a sect in (r, y, a)-space, the notation R, will be used to
denote the section of R consisting of all points (x, y) for which
(x, ¥, @) is in K.

Turorem 4. Let f(z, y, ) be defined and continuous on an open
set R in (z, y, a)-space and suppose in addition that each point of R
has a neighborhood on which f satisfics a Lipschitz condition (1:5)
with respect to y. Then for each (&, n, @) in R there exists a unique
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solution y(z, & n, a) of the differential equations
(1:12) ¥ =f(z,y, a),

defined and continuous for all x on an open interval (a(f, 3, a),
b(&, n, @), whose graph lies in the section R, of R, passes through
(%, n), and has all its finite limiting points, as x approaches a(§, 7, a)
or b(§ n, a), on the boundary of R.. Moreover, the solution
y(x, & », a) 18 continuous in all its arguments.

Proof.—Let I be an interval in R, with edges parallel to the
coordinate axes, on which f satisfies a uniform Lipschitz condition.
Then by Theorem 21 of Chap. V11, there exists a function g(x,
¥, a), defined for the same interval of values of x and « and for all
y, satisfying the same Lipschitz condition, and equal to f on I.(®
This function g is easily seen to be continuous. Thus by Theo-
rem 1 the differential equations 2z’ = g(x, 2, @) have a unique
solution z(x, £ 1, @), which is continuous in all its arguments by
Theorem 3. If (& 7, @) is interior to the interval I, the portion
of this solution which lies interior to I will be denoted by y(z, £, »,
a). It is a solution of the original differential equation (1:12)
defined on an interval a1(¢, 9, @) < x < bi(§, 1, @), and extending
from boundary to boundary of 1. Now let (a(§, 9, @), b(§, 9, @)
be the logical sum of all intervals containing £ on which a solu-
tion y(z, £ 7, ) is defined, lies in K., passes through (£, 1), and
is continuous in all its arguments. Clearly the solution is
uniquely determined on the interval (a(¢, 7, «), b(§, 1, )), since
a Lipschitz condition holds near each point on the graph. If
(xn, ¥yn) 18 & sequence of points on the graph such that lim z, = a

n=

= a(t, 7, @), lim y, = u, we can show by an indirect proof that

n=o
the point (a, «) is on the boundary of R.. Forif (a, w) is in R.,
then there is a neighborhood N(a, u, ; ¢) whose closure is con-
tained in R and on which f(x, y, ) satisfies a Lipschitz condition
with respect to y. Let M = Lu.b. ||f(z, y, &)|| for (z, y, ') in
N(a, u, a; ¢), and suppose & < ¢/(2M + 1). When (., ¥») is in
N(a, u; 8), the solution y(z, §, 7, &), which passes through (z,, y.),
must satisfy

1 For extension of the domain of f from an interval a simpler method than
that of Theorem 21 may be employed. For example, if there is only one

component of y, and the interval I is defined by a S = < b, c Sy < d, we
may set g(z, y) = f(z, ¢) fory < ¢, g(z, y) = f(z,d) fory > d.
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ly = ull = lly — vall + llya — ull = Mlz — 2] +
S @M+ 1)8<e

fora — & £ x £ z., and since that solution extends from bound-
ary to boundary of N(a, u; ¢) it must be defined fora — 6 < z
< b. The solution y(z, £ %, @) is also continuous in all its
arguments on the extended interval a — § < x € b, since
Yn = y(zu, £ 7, @) is continuous in (¢ », @) for z, |fixed, and
y(Z, Tn, Yu, @) is continuous in (z, y,, @). Thus we have obtained
a contradiction with the definition of the interval (a\({-‘, 7, @),
b(¢, n, @), so that the point (a, u) cannot be in B..

The hypotheses of Theorem 4 are clearly fulﬁlled‘\ in case
S(z, y, @) and the purtial derivatives f,(z, ¥, @) are continuous on
R. Consequently, Theorem 4 is applicable in the examples A to
E listed above, provided the region R is suitably restricted. In
example A, for instance, we would suppose ¥ > 0. In example
D, the domain of the function f may be extended by setiing
f =0 for |y] > 1, and then the hypotheses of Theorem 1 are
satisfied. That a solution may have infinitely many limiting
values on the boundary of the region R is shown by the example

y' = y(cos log x)/x,
whose general solution is

y — Cenin log ¢

However, when f(z, y) is continuous on R plus its boundary,
there cannot be more than one finite limiting point at either
end of the interval (a, b).

The method of successive substitutions may be used to prove
that, when the functions of the set denoted by f(z, y) are all
analytic functions of their arguments, then the solutions of the
differential equations (1:4) are analytic functions. For this
purpose the variables must be regarded as complex variables, and
care must be taken to restrict the independent variable z to a
neighborhood of £ so small that the successive approximations
ym(z, £, 7) all lie in the domain where the functions f(z, y) are
analytic. The line of development explicitly outlined in Theo-
rems 1 and 4 is not applicable. The reader may consult Picard
[8], pages 379-381.

*When the function f(z, y) is only assumed to be continuous
on the open set R, we may prove the existence (though not the
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uniqueness) of a solution through each point of R, extending
from boundary to boundary of R, with the help of the preceding
theorems and some theorems from Chap. VII, as follows:

*TueoreEM 5. Let f(x, y) be continuous on an open set R in
(z, y)-space. Then through each point (&, #) in R there passes at
least one solution y(x) of the differential equation y' = f(z, y),
which is defined and continuous on an open interval (a, b), has its
graph in R, and has all its finite limiting points, as x approaches
a or b, on the boundary of R.

Proof —Consider an interval I contained in R, defined by
inequalities of the form |z — & < hy, |ly — ]| < he, and let
M = 1lub. ||f(z, y)|| on I. By Theorem 29 of Chap. VII, there
is a sequence (P,) of polynomials such that ||P.(z, ¥) — f(z, )|
approaches zero uniformly on I, and ||[Pa(z, ¥)|| £ M on I. By
Theorem 4, there is a unique solution y,(xr) of the equation
y' = P.(z, y), passing through the point (£ 5). This solution
lies in the interval I at least for |x — £ < h, where h is the smaller
of hy and he/M. The functions y.(xr) are bounded and have
bounded derivatives for |xr — £ < h, and so they are equicon-
tinuous. Hence by Theorem 28 of Chap. VII, there is a subse-
quence (y») which converges uniformly on the interval |z — §|
=< h to a function y(z). Then with the help of an elementary
inequality (or from Theorem 4 of Chap. VII) it follows that
yﬁ,,(x) = P,.j(x, y,,’(:c)) converges uniformly to f(z, y(z)), and
80 y(z) has a derivative y'(x) = f(x, y(z)) for |zt — & = h, by
Theorem 8 of Chap. VII.

To show the existence of a solution with the properties described
in the theorem, we now consider the set of all open intervals
(B, v) containing £, with 8 and v rational, on which a continuous
solution through the point (£, ) is defined. This set is denumer-
able, and we may let (8., v») denote a denumeration of it. Let
y1 be a solution on the interval (8, v1), and take the smallest
integer n; > 1, if one exists, such that the interval (8., va) is
not contained in (81, v1), and such that there is a solution 7.
on (ﬁ"u 7"1) equal to y; on the common part of the two intervals.

Such a solution . defines an extension y, of the solution y, to
the sum of the intervals (81, v1) and (Bn, ¥n)- Next take the

smallest integer 1y > 7, such that a solution §; on (8, v» ) defines
in a similar way an extension y; of y2. Proceeding in this way,
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we obtain a finite or denumerable increasing sequence of solu-
tions, whose logical sum defines a solution y(z) on an open
interval (a, b). If a limiting point (z, y) = (a, u) were interior to
R, there would be a solution containing y(x) and defined on an
interval extending to the left of @, by an argument somewhat
similar to that used in the proof of Theorem 4. Such a solution
would have a section defined on an interval (8., v.) with 8, < a.
But this contradicts the definition of the solution y(:§l

A direet proof of the existence of a solution withouy the use of
the Lipschitz condition, using the Cauchy polygon iecthod, is
given, for example, in Kamke [3], pages 59-66, 126-13(.

*With the help of an additional hypothesis it may be proved
that the graph of the solution described in Theorem 5 cannot have
any limiting points at infinity except for £ = «, as indicated
below.

*THEOREM 6.  Let L() be a positive continuous function defined

® du
for 0 = u < o such that /; o)
llf(x, Y| < L for all values of x and y for which f is defined.
Let y(z) be a continuous function having a derivative y'(x) = f(x,
y(x)) on the interval a < x < b.  Then the graph of y(x) has no
limiting points at infinity unless a or b is infinite.

Proof—Let uo = |ly(£)||, where £ is an arbitrary point of the
interval (a, b). The function

diverges.  Suppose that

x=¢(")=ﬁ%+f

is continuous and increasing for u = 0, and lim y(u) = + =,
U= 4 o
and so ¢ has a single-valued inverse u = ¢(x) which is defined and
continuous at least for § £ r < o, and satisfies the differential
equation w = L(u). We shall show by an indirect proof that
lly(x)|| £ ¢(zx) on the interval ¢ £ x < b, s0 that y(z) cannot
have any limiting point at infinity as z approaches b unless b
itself is infinite. If there is a point z; such that [ly(z)|| > ¢(z1),
there is a point zo such that & < zo < z4, |ly(z0)|| = ¢(x0), and
ly@)| > ¢(x) for xo <z < z1. Then [ly'(@o)| = llf(ze, y(za)ll
< L(lly(xo)[l) = ¢'(x0), and hence [|y(z) — y(z)|| < ¢(x) — $(x0)
on a small interval zo < ¢ < xo + 6. From this we find immedi-
ately |ly(@)|| < lly(xo)l| + ¢() — ¢(xo) = ¢(x) for z, <2 <
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zo + 8, but this contradicts a preceding inequality. The cor-
responding result for the interval a < z £ ¢ follows from the
above by the transformation z = —i.

Another existence theorem, for the case when f(z, y) is continu-
ous in y but merely integrable in the Lebesgue sense with respect
to z, is discussed in Caratheodory’s Vorlesungen diber reelle
Funktionen, pages 665-688.Y A résumé of a number of other
existence theorems and their applications has been published by
W. M. Whyburn.® Both the method of successive substitu-
tions and the Cauchy polygon method may be extended to apply
to a rather general type of integral equations.® They may be
used, of course, for the actual computation of solutions of par-
ticular equations. For a discussion of convenient methods in the
numerical solution of differential equations, see Moulton [1],
Chaps. 12, 13; Bennett, Milne, and Bateman |7]; and Scarborough
(9].

2. Special Properties of Linear Homogeneous Differential
Equations.—In this scction we wish to consider the special case

(2:1) y = Ay

of equation (1:8) in which there are no terms independent of y,
and A(zx) is a matrix of k rows and k columns whose clements are
continuous on @ < x £ b.  As hefore, y is regarded as a matrix
having only one column. If Y (x) is & matrix of several columns
each of which is a solution of (2:1), we write

Y= A@W)Y

and call Y a matrix solution of (2:1). The columns of a matrix
solution Y form a fundamental set of solutions of (2:1) in case
(a) these columns are linearly independent and (b) every solution
of (2:1) is expressible linearly in terms of these columns. In

1 See also McShane, Integration, Chap. 9.

2 See Ezistence Theorems for Ordinary Differential Equations, Publications
of the University of C'alifornia at Los Angeles in Mathematical and Physical
Sciences, Vol. 1, No. 2, pp. 115-133.

38ee A. M. Killen, An Application of the Cauchy-Lipschitz Method to a
System of Functional Equations, M.S. Thesis, University of Chicago, 1930;
H. H. Bishop, Existence Theorems for a Class of Inlegral Equations, M.S.
Thesis, University of Chicago, 1935; Graves, “Implicit Functions and
Differential Equations in General Analysis,” Transactions of the American
Mathematical Society, Vol. 29 (1927), pp. 514-552.
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case k = 1, equation (2:1) may be explicitly solved, and in this
case it is scen at once that every solution is a constant multiple
of a particular solution. The proofs of the next two theorems are
obvious.

TreorEM 7. The class of solutions of (2:1) is a linear set,
that ©s, every linear combination with constant cocfficients of solutions
18 also a solution.

TreoreM 8. If a solution of (2:1) has y(£) = 0 at\a point &,
then y(x) vanishes identically on [a, b].

This is so since y(xr) = 01is always a solution, and by l\hoorem 1
there is only one solution with given initial values \

TaEOREM 9. If Y is a matrix solution of (2:1) then the columns
of Y form a fundamental sct of solutions if and only if Y is square
and has a determinant not zero at one point. In this case the
determinant of Y does not vanish on [a, b).

Proof—Since the initial values n = y(£) of a solution may be
chosen arbitrarily, it is clear that ¥ must have at least k columns.
1f Y had more than & columns, then corresponding to a particular
point £ we could determine a matrix ¢ of one column (and more
than k rows) such that Y (¢)e = 0. Then by Theorems 7 and 8
we should have Y (z)c = 0 on [a, ], that is, the columns of ¥V
would not be linearly independent. Hence Y is square. The
argument just made applics also to show that det Y (z) cannot
vanish on [a, b]. To prove the converse, suppose that

det Y (£) # 0.

Then the columns of Y are clearly linearly independent. Cor-
responding to an arbitrary solution y(z) of (2:1), there is a matrix
¢ of one column such that

Y(&)c = y(&).

Since the two solutions Y (xz)c and y(x) have the same initial
values at £, they must be identical on [e, b] by Theorem 1.

TrEOREM 10. There erists a matrix Y (x) whose columns form
a fundamenital set of solutions of (2:1).

To see this, it is only necessary to take for the matrix Y (£) of
initial values the identity matrix I. Any other nonsingular
matrix of initial values would do as well.

From these theorems we see that the solutions of (2:1) form
a k-dimensional linear subspace of the space of all continuous
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functions on [a, b] with values in k-dimensional space. The solu-
tions of a single linear homogeneous equation of the nth order

dn dn——l
Tt P@ At Ry =0

form an n-dimensional linear subspace of the space € of con-
tinuous real-valued functions.

When the coefficients are constant, that is, when the matrix 4
is independent of x, explicit formulas for the solutions may be
determined. For an excellent discussion of this case, see W. D.
MacMillan, Dynamics of Rigid Bodies, pages 419-429. The
method used there is due to W. Bartky.

The following examples may serve as illustrations of the mean-
ing of these theorems. Numerous other examples may be found
in any elementary text on differential equations.

F. xy’ = y.
G. ¥y +py=0.
H. %y’ = 2zy’ — (2 4+ 2)y.

When G and H are written as systems of first-order equations,
using the substitution y, = y, y» = ¥, we find that a matrix of

solutions of G is
cos uxr sin uzx
— sin uz  cos pz)’
and a matrix of solutions of H is

z cos x T sin x )
—zginxz 4+ cosx zcosz+ sinzx/.
The conclusion of Theorem 9 is violated in H as well as in F,
but the hypotheses of this theorem are not fulfilled on any interval
containing the point £ = 0.

8. An Embedding Theorem, and the Differentiability of
Solutions.—I¢t is frequently desirable to know that a given solu-
tion of a differential equation is embedded in a family of solutions
and that the family is differentiable with respect to the constants
of integration. The following embedding theorem is an easy
corollary of Theorem 4.

Turorem 11. Suppose that f(z, y, ) satisfies the hypotheses
of Theorem 4, and that for ag S z S bo, ¥ = yo(2) s a solution of
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(1:12) corresponding to a = cy, whose graph E lies in the section
R. of R. Then there extists a positive number & such that the family
of solutions y(x, & u, a) of (1:12) s defined and continuous for
(¢, n) in the neighborhood N (E; 8), a in N(ao; 8) and 6y — § S x
=< bo + 6.

Proof —Since the set R is open, the solution y,(x) has by
Theorem 4 an extension defined on an interval ay — ¥ £ 2 < b
+ v. Let E; denote the graph of this extended soluti&n. Since
the set of points (z, y, ao) with (x, y) on E; is bounded and closed
and interior to R, the Cartesian product of the neighborhoods
N(E; €) and N(ap; €) lics in B when e is sufficiently small. The
family of solutions y(z, £, 1, @) given by Theorem 4 is continuous,
s0 by Theorem 23 of Chap. IV it is uniformly continuous for
(,, m) on E, a = ay, o —v = 2 = by + v. Then there is a
number § < e such that the graph of y(z, £, 9, @) lies in N(E,; €)
for (¢, 7) in N(E; 8), ain N(as; 8), and ap — § £ = < by + 6.

For convenience we shall say that a funetion such as f(r, y, «)
is of class C”’ in y on a region R in case f and all its partial deriva-
tives with respect to the components of y up to and including
those of order p are defined and continuous in (z, ¥, «) throughout
the region B. Partial derivatives will be indicated by subseripts,
except that derivatives with respect to  will usually be indicated
by accents as before. Thus the symbols f, and y, denote square
matrices of partial derivatives, while f, y, 2, y., y: denote matrices
of one column only. The proofs of the following theorems are
based on a simple preliminary result, in the statement of which
it is convenient to omit the parameters a.

Lemma. Suppose that f(z, y) is of class C' in y on the open
set R, and suppose that y(z, t) is a family of solutions of the differ-
ential equations y' = f(x, y), continuous in (x, t) and lying in R
Jor ay £ x £ by, |t| < 8. Suppose in addition that the partial
derivative y,(§, 0) exists and is finile, where ¥ is a fixed point of
[ao, bo]. Then the dertvative y.(x, 0) cxists and ts finite for ay = x
=< bo, and is a solution of the lincar differential equations

(3:1) 2 = fu(z, y(z, 0))z.
Proof —If we set Ay = y(z, t) — y(z, 0), and

A, ) = [ fu(z y(z, 0) + 0 ay) do,
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we see that Ay/t is a solution of the linear differential equations
3:2) 2= A(x, 1)z

This system of equations has by Theorems 1 and 3 a unique con-
tinuous family of solutions z(z, , ¢, t) defined for ap £ z = by,
[t| < &, ¢ arbitrary, and having z(¢, &, ¢, t) = . Thus

%‘7—/ = 2(x, §, é%(—szy 1),

and, since by hypothesis Ay(£)/¢ has a finite limit y,(¢, 0), we
see that Ay(z)/t likewise has a finite limit

yt(x’ 0) = z(x, E: yt(&y 0): 0)
for ap £ x = by, satisfying (3:2) for ¢ = 0, that is, satisfying
(3:1).

Tarorem 12. Suppose that f(x, y, @) is of class C» in y
on the open set R. Then the family y(x, & 9, a) of solutions
of the differential equations (1:12), given by Theorem 4, has the
property that the partial derivatives

. yf(xy &, a): yﬂ(-r’ £, M, a))
3:3) Ye(x, £, @), yl, & m, @),

are defined and continuous and of class C7=VY in 4 for (£ 9, a) in
Rand a(t, 1, a) <z <b(& n, ). Moreover y, and y, salisfy the
linear differential equations

(3:4) Z =z, y, & 9, @), Q)2

with the tnitial values

yE(Ey & O‘) = —’f(gy uh a)v yﬂ(fr &, 0‘) = I:

where I 1s the identity matriz, and hence they are related by the
formula

(3°5) y5<x: &, a) = —yﬂ(-r, £, a)f(f, D Ol).

Proof —We may clearly restrict attention to a closed interval
[@o, bo] to which £ and z are interior, and such that a(§, 7, @)
< ay <bp <b(§ m «). On such an interval the preceding
lemma is at once applicable to show the existence of y,(z, £, n, ),
since y(£, £, 1, @) = nand hence yy(% & 7, @) = I. Moreover, by
the lemma, y,(x, £ 7, ) is a matrix solution of the equations
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(3:4), and by Theorem 4 this solution must be a continuous
function of z and the parameters (£, 9, @). To show the existence
of y¢, we take ¢t = Afin the lemma. We have (omitting 5 and «),

13
W(E £+ 08 — g6 8 JroaJ@® V@ E+ 8D) do

Af At

of f(z, y, @) this has the limit —f(%, 9, ). Thus by\the lemma
the derivative y:(x, & 7, «) exists and satisfies (314). Since
y,(¢, & 7, @) = I, the columns of the matrix y, form a funda-
mental set of solutions of (3:4), and since (3:5) holdsr&or z = £
it holds for all values of z on [a,, bs]. The continuity of y:(z, &,
7, @) follows from (3:5), and the continuity of y; and y, follows
from (3:4).

The proof may be completed by induction. Suppose that,
whenever f is of class C® in y, the functions (3:3) are of class
C® b in 5. Suppose also that the function f is of class C®+D in
y. Then the right-hand sides of the equations

and by the Theorem of the Mean for integrals and thicontinuity

Z = fu(x; y(xl v, W, a)y a)z’
w =0,

are of class C® in (z, w), and hence by the induction hypothesis
their solutions z = 2(z, &, {, #, v, @), w = 7, are such that z; and
z, are of class C»D in (¢, 9), that is, z is of class C® in (¢, ).
It follows at once that yE(xr E, m a) = Z(.’B, e: —f(Ey M a)) m & a)
is of class C in 9, and likewise for y,(z, £, 1, @). Since y;and y,
are solutions of (3:4), it follows also that y; and y, are of class
C® in 7.

CoROLLARY. In case f(z, y, a) is of class C® in (y, o), then
not only the partial derivatives (3:3) but also ya(z, & 9, @), Ya(z, &
7, @) are defined and continuous and of class C*»~V in (y, a).

Proof —If we adjoin to the differential equations (1:12) the
equations o/ = 0, we have a system satisfying all the conditions
of the theorem with y and « as the dependent variables, and
consequently the solutions have the asserted differentiability
properties with respect to the initial values 7 and a.

TueoreM 13.  Suppose that f(x, y, ) 18 of class C® sn (z, y, @)
on R. Then the family y(z, & n, a) of solutions of the differential
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equation (1:12) and its derivative y'(z, £, 9, ) are of class C™ in
(x’ E’ 77, a)’

Proof. —By the preceding theorem and its corollary, y(z, £, », «)
is of class C’' in (z, £, 7, ). Since

(3:6) Y'(z, & n, a) = f(z, y(z, £ 0, a), a),

y'(z, & n, a) is also of class C’. To complete the proof we have
to show that, when the statement holds for p = ¢, it must hold
also for p = ¢ + 1. If fis of class C¢<*V and y(z, &, 7, a) is of
class C‘?, then the right-hand sides of the two systems of differ-
ential equations

B:7) 2 = fylz, y(z, v, 1, @), )z,
(3:8) 2’ = fy(x, y(x, v, 1, ), a)z + fa(@, y(x, v, 1, a), a),

are of class C9 in (z, 2, v, 1, «). If the statement holds for
p = q, then the families of solutions z(z, £, ¢, v, 7, a) of each of
these systems will be of class C9 in (x, & ¢, v, 7, @). Now the
partial derivatives y; and y, satisfy (3:7) with » = ¢ and the
initial values ¢ = —f(¢ 0, @) and ¢ = I, respectively, and y.
satisfies (3:8) with v = £ and ¢ = 0, so that yy, y,, and y. are of
class C9, By (3:6), 3'(x, & 2, @) is also of class C9, so that y is
of class C(etD  and by another reference to (3:6), ¥ is also of
class C(e+V,  This completes the induction.

As examples let us consider the following:

Jooy =2yt

K. ¢ =yXz+y+ 2.

L. ¢y = —gsiny.
Example J is a slight modification of cxample A in Sec. 1. It
has the solution y = 0. However, the solution y(r, £ ») has
¥(1,0, n) > 1 whenever > 0, and the conclusion of Theorem 11
fails. In example E in Sec. 1, every solution y(z, § n) with
7 # 0 becomes infinite at one end of its interval of definition, and
y(z, & 0) = 0, but nevertheless the preceding theorems are
applicable. Since y(z, £ n) = #/[1 + n(¢§ — x)] in this example,
we can verify directly that the following statement holds:

B9) M>0.e>0:D:35>0s:y<d.ldf<M
')' Iy(xy 0, 77)? <e

By Theorem 11 we know that the solutions are defined and that
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(3:9) also holds in example K, although in this case we have no
explicit formula for the solutions. Example L. is the differential
equation for the motion of a simple pendulum of unit length,
where y is the angular displacement from the vertical and z is
the time. If we denote the family of solutions by y(z, £, 9, 7'),
we see that y(z, 0, =, 0) = . This solution corresponds to the
position of unstable equilibrium when the pendulum bob is at
rest at its highest point. In this case the followiné\ statement
holds by virtue of Theorem 11:

M>0.e>0:0:36>0s:y| <d.]z| =M
D ly@, 0, m 1) = wl <e.

This means that the pendulum will remain within an angular
distance e of the vertically upward position for M units of time,
provided its initial velocity is sufficiently small.

4. First Integrals.—By definition a first integral of the system
of differential equations (1:4) is a function G(x, y) which is of
class C” on an open subset T of the set R, is not constant on T,
and is such that for every solution y = ¢(x) of (1:4) whose
graph lies in 7' the function G(z, ¢(x)) is constant.’V Some
results concerning first integrals follow immediately from the
preceding sections. FKor convenience we shall now denote the
family of solutions y(z, £ 1) given by Theorem 4 by ¢(x, E, 1),
and denote its components by ¢é.(x, & ) for i =1, - - -, k.
Let J denote the projection of the region R on the x-axis. For
definiteness assume that f(z, ¥) is of class C' in y.

THEOREM 14. For each © and each fixed £ in J, (& x, y) isa
Jirst integral.

Proof -—¢(&, x, ¢(x, £y, n)) = ¢(£, £o, 1), and this is independent
of z.

THEOREM 15.  For each fixed £in J, the k first integrals ¢:(%, x, y)
are independent. M oreover, any nonconstant diffcrentiable func-
tion of these first integrals is also a first integral.

Proof —The Jacobian of these first integrals as functions of y
is the determinant of the matrix ¢, which is never zero by
Theorems 9 and 12. Hence if H(y) is differentiable but not
constant, H(¢(%, z, y)) cannot be independent of y, so that there

! Some writers drop the adjective “first,” but other writers use the term

““integral”” where we have used ‘“solution.” To avoid confusion we retain
the classic terminology ‘‘first integral.”
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can be no relation existing between the first integrals ¢;(£, z, y).
It is obvious that H(¢(¢, x, y)) is also a first integral.

THEOREM 16. If G(z, y) s a first integral on an open subset T
of R, and & is in the projection A of T on the x-axis, then on a
suitable subset of T, G may be expressed as a function of the first
integrals ¢.(&, x, y), so that these latler may be regarded as a funda-
mental sct.

Proof —Let H(¢, n) = G(x, ¢(x, & n)). Then

H(E ¢(§ x, ) = Ga, ¢(z, & ¢(§ 2, 1))
= G(z, ¢(z, 2, ¥))
= G(z, y).

THEOREM 17. Let Gu(x, y), G =1, - - - | k), be a set of first
integrals defined on an open subset T of R, whose Jacobian with
respect to y s not zero on T. Then if the equations

(4:1) Gi(z, y) = o

have an initial solution (&, n) in T, they deflne a solution y = y(x)
of the differential equations (1:4), passing through the point (¢, 7),
and extending from boundary to boundary of T.

Proof —By Theorem 3 of Chap. VIII, the equations (4:1)
have a unique solution y = §(x) through the point (£, ) and
extending from boundary to boundary of T. The differential
cquations (1:4) likewise have a unique solution y = y(x) through
(& 7). Since by definition a first integral is constant on each
solution of (1:4), these two functions y(z) and §(x) must coincide
on their common interval of definition.

TuroreM 18. A function G(x, y), of class C' and not constant
on an open subset T of R, is a first integral of (1:4) if and only if
1t 18 a solution of the linear homogeneous partial differential equation

(4:2) Xt 2 % fiw ) =0
t=1

on T,

This follows immediately from the definition of first integral.

From the theorems of this chapter it follows that the problems
of finding the general solution of the system of ordinary differ-
ential equations (1:4) and of finding the general solution of the
partial differential equation (4:2) are equivalent problems.
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Moreover, a knowledge of one or more first integrals may theo-
retically be used to reduce the order of the system (1:4). Thisis
sometimes but not always an advantage in the practical determi-
nation of the solutions of this system.(®

The following examples are taken from problems of dynamics
and the independent variable z represents the time, while G and
H are first integrals. ,

V' = —¢;G=29y+y* H=—g2?/2 -y +y.

"= —gsiny; ¢ = —2g cosy + y'2

y' = —ky; G =y +y ‘

=02 — k2fr%, 0" = —2r'0'/r;G = r'* + r”é,’z — 2k2/r,
H = r%’. \

orZa
<

In each of these examples the first integral G is proportional to
the sum of the kinetic and potential energies. In example Q the
differential equations are those for the motion of a particle in
a central field of force, in which the force is inversely proportional
to the square of the distance, and r and 6 are polar coordinates.
The first integral H in this case is the rate at which the radius
vector sweeps over area. In examples M and P the solutions are
readily obtained in explicit form, and so other first integrals may
be written down at once, by virtue of Theorems 14 and 15.

6. Equations in the Form F(z, y, ') = 0.—Differential equa-
tions frequently arise which are not solved for the derivatives.
Theorems concerning their solutions can be obtained by combin-
ing the results of the preceding sections with the implicit func-
tion theorems of Chap. VIII.

We shall consider a function F(z, y, z), which is of class C» on
an open sct R in (z, y, 2)-space, where p = 1. The function F
and the variables y and z are each supposed to have the same
number of components. Following the terminology of Chap.
VIII, Sec. 3, an ordinary point for F is defined to be a point
(z, ¥, 2) in R such that the matrix of partial derivatives F,(z, y, 2)
is nonsingular. All other points are exceptional points.

THEOREM 19. For every ordinary point (&, n, ) for the function
F, with F(§, n, §) = 0, there is a unique continuous solution
y(z, & n, ) of the differential equations

(5:1) ' F(z,y,y) =0
1 See, for example, Moulton [1], Chap. 5.
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and tnitial conditions

y(EY e’ ‘n’ g-) = n) yI(E’ E) n’ g‘) = i‘)

defined on an interval a < x < b such that on this interval the point

P, (I, y(x, £ M, g.); y’(x, E) 7, f))

of (2k + 1)-dimensional space is always an ordinary point for F,
whale the only finite limiting values of P, as x approaches a or b are
exceptional points for F. When ¢ = {(&, 1) is a continuous solu-
tion of F(&, n, ) = 0 composed of ordinary poinis for F, y(z, & 1,
C(& m) and o' (z, £ 9, $(£, m)) are of class C® in (z, £, 7).

Proof —By Theorem 2 of Chap. VIII, the equations F(z, y, z)
= 0 have one and only one solution z = f(z, y) defined near the
point (£, n) and having values near ¢, and this solution is of
class C®, Then the differential equations 3’ = f(x, y) have a
unique continuous solution y(x, £, ) defined for z near £ and
y(x, & n) and y'(x, £ n) are of class C® in all their arguments, by
Theorem 13. When the equation F(§, 5, {) = 0 has more than
one solution for ¢{, the solution y(z, £ ) of the differential equa-
tions (5:1) depends also on ¢, and we may indicate this by writing
y(z, & 9, £). The above argument shows that a continuous
solution y(z) of (5:1), all of whose elements (x, y(z), ¥'(x)) are
ordinary points for F, is uniquely determined by its initial values.
Now let y(x, & 1, ) be the logical sum of all continuous solutions
passing through the initial element (¢, 4, ), satisfying the last
statement of the theorem, and with no clements that are excep-
tional points for F. This function is defined for z on an open
interval (a, b), and it remains only to show that the only finite
limiting points of P, as x approaches a or b are exceptional points
for F. This is accomplished as in the proof of Theorcm 4.

THEOREM 20. Suppose that F(z, y, 2) is of class C® on an open
set R, and that

E: y = yz), ay £ = £ by,

s a solution of class C' of the differential equations (5:1), along
which the matriz F, is nonsingular. Let E1 denote the set of points
(®, yo(x), yh(x)), @0 £ S b. Then there exist positive numbers
e and § and a unique function y(z, §, n) defined forao — 8 £ z = bo
+ 8 and (&, ) in the neighborhood N (E; 6), such that (z, y(x, & n),
¥'(z, £ n)) lies in N(E,; € and satisfies the differential equations
(5:1).  The functions y(z, &, n) and y'(z, & n) are of class C'P.
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Proof —By Theorem 4 of Chap. VIII, there exist positive
numbers e and §; and a function f(x, y) such that f is of class C@
on N(E; 8,), and for each (z, y) in this neighborhood (z, y, f(z, y))
is the unique solution in N(Ey; €¢) of F(z, y, 2) = 0. Then by
Theorem 11, the conclusion stated must hold for a sufficiently
small § < 8. The differentiability follows from Theorem 13.

In the following examples there are singular solut{ions which
correspond to exceptional points for the function F.

R. y24+4y2—-1=0.

S. Y-+ —yi—1=0yys+ywe=0.

T. 9 — 95" + 4y cos 2x — 4y, sin 2z = 0, 2y} +;y1 sin 2z

+ 4y2 cos 2z = 0.

The solutions of R guaranteed by Theorem 19 are the arcs of
the curves y = sin (z + C) between the points of contact with the
singular solutions y = +1. The solutions of S are given by the
formulas y; = (1 4+ C)*sin (x + C1), y2 = Cscos (x + Cy).
For C; # 0 the solutions extend fromz = — 0 toz = +  with-
out approaching an exceptional point, but for C; = 0 the situa-
tion reduces essentially to that of example R. If weset ¢y = 7/2
+ e cos i, Cs = sinh (e sin ¢), and take £ = 0, then as ¢ varies
through an interval of length =, the initial values %, and 7,
return to their original values, but {; and ¢, become the negatives
of their original values. The interval (a,b) of definition of the
solution, described in Theorem 19, becomes finite whenever
sin ¢ = 0. The solutions of 7" are given by the formulas

y1 = (cos x + ¢1)? — (sin x + ¢)?,
y2 = 2(cos x + c1)(sin & + ¢,).

One of these solutions meets the singular solution y, = y, = 0
if and only if ¢} + ¢} = 1.
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CHAPTER X
THE LEBESGUE INTEGRAL

1. Introduction.—The theory of Lebesgue integrals will be
developed here from the point of view originally expounded by
F. Riesz [8]. This makes it possible to prove the important
convergence and approximation theorems for integrals at the
very outset, in a simple way, on the basis of only a rudimentary
theory of point sets and measure. The general theory of measure
becomes a corollary of the theorems on integrals. The method
of Riesz also makes possible a simple and brief treatment of the
differentiation of indefinite integrals of functions of one variable.

The thcory will be phrased in terms of functions of a single
real variable. However many of the definitions and theorems,
especially in the earlier sections, are equally valid for integrals
of functions of any finite number of variables, and for a general-
ized measure function replacing the ordinary length, area,
volume, ete., but having the properties specified in Sec. 2. 'When
a gencral measure function is used, the integral usually known
as the Lebesgue-Stieltjes integral is obtained. Those theorems
which are not known to be valid for the Lebesgue-Stieltjes
integral in several dimensions are marked with a . Occasionally
indications will be given, in paragraphs marked with a *, of the
necessary modifications in terminology and proofs for the case
of functions of several variables or for the Lebesgue-Stieltjes
integral. These paragraphs may well be omitted at a first
reading. The reader who wishes to gain a knowledge of the
Lebesgue-Stieltjes integral should restudy this chapter in connec-
tion with Chap. XII.

The method of Riesz for the definition of the integral is exten-
sible to the case when the independent variable ranges over a
topological space in which a suitable measure is defined, and the
functional values lie in a Banach space.

! For the second aspect of the generalization, see Bochner, “Integration
von Funktionen deren Werte die Elemente eines Vektorraumes sind,”
Fundamenta Mathematicae, Vol. 20 (1933), pp. 262-276.

173
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2. Point Sets and Functions of Intervals.—An interval is a
set of points of the real axis defined by one of the following types
of conditions:

i
An interval of the first type is closed, one of the fourth is open,
while an interval of the second or third type may be called
half-open. An intervul of the first type with @ = b isia degener-
ate interval or a point. For convenience the null set wln also be
considered as an interval. |

*In a space of more than one dimension, an mterval would be
defined by taking an inequality of one of the four types for each
coordinate. In this case there are various degrees of degeneracy
of intervals.

All point sets E to be considered in this chapter are subsets of a
nondegenerate finite closed fundamental interval I. All comple-
ments of sets are then taken with respect to I, that is, the com-
plement of a set E, denoted by cE, is defined tobe I — E. A set
E is open relative to I in case its complement is closed. Here-
after the term “open” is understood to mean ‘““relative to I.”

The sets of a family are said to be disjoint in case no two of
them have an element in common.

We shall be interested in an interval function m(z) which is
defined for all subintervals ¢ of I. Such a function m is said to be
additive in case

m(zl) = m(’bz) + m(iﬂ')y

whenever ¢, is the sum of disjoint intervals 7, and 7. We suppose
that the interval function m(?) is nonnegative, finite, and additive,
and that it has the additional properties

m(i) = g.L.b. m(z,) for all open i; D 1,

(2:1) m(5) = Lu.b. m(is) for all closed 75 C 4.

The simplest example of such a function is the length of the
interval. With it we obtain the ordinary Lebesgue integral in
the developments that follow.

*For intervals in two dimensions, length is to be replaced by



Skc. 2] POINT SETS 175

area. Other examples of additive interval functions of the
above type are obtained by using the increments of nondecreasing
bounded functions f(z). If 7 is the open interval a < z < b, we
should then set

m(z) = f(b — 0) — f(a + 0),

where f(a 4 0), for example, denotes the right-hand limit of
f(z) at a. If 7 is the closed interval a < x < b, we set

m@@) = f(b + 0) — f(a - 0).

For a function f(z,, x;) of two variables which is nondecreasing
in a suitable sense, and an open interval

10y <z < by, ay < Tz < by,

we set

m(@) = f(by — 0, ba — 0) — f(a1 + 0, b — 0)
'—'f(bl - 0, 22 + O) +f(a1 + 0, Qs + 0).

When these more gencral interval functions m(i) areadmitted,
we obtain the generalization of the Lebesgue integral usually
known as the Lebesgue-Sticltjes integral.

We shall be interested in certain special classes of point sets
in I. The class ¥ consists of all point sets A, each of which
is the sum of a finite number of disjoint intervals. The class €

consists of all sets C, each of which is the sum of a finite or
q

denumerable number of disjoint intervals. If A4 = Zi/.,
h=1

C-—-Xz’;.,weset

g

m(4) = 2 m@), m(C) = Em(z’;.).
h=1

Here and in the following the summation sign 2 without any

attached index of summation will be used to indicate summation
over all possible values of the variable, and so may indicate either
a finite sum or an infinite series. The justification for the
definition of m(4) is obtained by considering any two representa-

tions z 4 and zz; of A as u sum of disjoint intervals, and a
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third representation zz',',' such that each interval 4, or 3} is a sum
of certain intervals 7}/, and the sum of any two adjacent intervals

i, and 7] is again an interval. The justification of the definition
ngen for m(C) is provided by the Corollary of Lemma 2.

Since the product of two intervals is obviously an interval
and the complement of an interval is in 9, we can readily verify
the following properties of the class :

Lemma 1. The class N is closed with respect to the Qperatwna of
takmg complements, differences, and finile sums and pﬁ\oduct.s If

A= EA“ ‘
q

(2:2) mM)éEmM}

1

When the sets A; are disjoinl, the inequality in (2:2) should be
replaced by equality.

In order to justify the definition of m(C) we nced the followmg
proposition :

Lemma 2. Let C = Zih be a subset of E = Zz,’,, where the

intervals 1, are not required to be disjoint. Then

Y m(@n) < ). m).

Proof—By (2:1), for an arbitrary positive ¢, cach interval
7, can be enlarged into an interval 4; in such a way that every
point of C is interior to some 7, , and

D m) £ ) mG) + e
Likewise each interval 4, contains a closed interval % such that

D m@) 2 ) mi) — e

Then for each g the set 4 = i 15 is a bounded closed set covered

1
by the family of intervals 7. By the Borel theorem, A is
covered by a finite number sy, . . . , 7, of these intervals. Thus
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P
S mid) Y m(@) s Y miip),
1 1
Y m@) < Y may),

Y m) Y m(@p) + 2

and since e is arbitrary, the desired inequality follows.
COROLLARY. Let 2 i = z %, be two representations of a set C
as a sum of disjoint inlervals. Then

Y m@) = Y miy.

The following result is casily obtained by use of Lemma 1.

Lemma 3. If E is a denumerable sum of intervals, then E isin G.

Lemma 4. The class € s closed with respect to the operations
of taking denumerable sums and finite products. If Ci C Ch,

mw0§M@)HC=EQ

2:3) M®§zm@)

When the sets C; are disjoint, the incquality in (2:3) should be
replaced by equality.

Proof —The closure of € with respect to sums follows from
Lemma 3, and that with respect to products from the formula

. o <o
2 zh z zk = z Zhlk'
h k kk

The remaining statements follow {from Lemma 2.

Lemma 5. Every open set E is in €. When the fundamental
interval I ¢s one-dimensional, an open set E has a unique representa-
tion (apart from order) as a sum of disjoint open intervals.

Proof for the One-dimensional Case.—Let (x.) be a denumerable
set dense on I. Then each point z, is contained in a maximum
open interval 7, contained in E. (This interval ¢, is null when
Tn is not in E.) Let n; = 1 and let ny be the least integer such
that x,, is not in 4,, ns the least integer such that z,, is not in
T, + %ny and so on. Then

E =) i
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*Proof for the General Case.—As before, let (z,) be a denumer-
able set dense on I. Let 7. denote the “cube’’ with center z,
and edge 1/k. Then E is the sum of the intervals 7., which are
contained in E, and hence is in € by Lemma 3.

A set Z is a set of measure zero in case for every ¢ > Othere
is a set C in € such that C O Z and m(C) < e. The following
properties are easily proved:

Lemma 6. Every subset of a set of measure z¢ro is also of
measure zero.

Lemma 7. The sum of a denumerable number of sets of measure
zero is also of measure zcro. \

We shall need also the following fundamental resx\\lt:

Lemma 8. Let (C.) be a sequence of scts in € such that

lim sup C, = Z,
where Z is a set of measure zero. Then

lim m(C,) = 0.
Proof—Let Cx = ) C. ThenZ = [[ G, Cira C G, m(C)
. ‘

nzk
< m(Ci), by Lemma 4. Thus it suffices to consider the case
when the sequence (C,) is nonincreasing. If the lemma is false
in this case, there exists a positive number & such that m(C,) > é
for every n. Let e be positive but less than 8. Let C, = z Tnh

A
be a representation of C, as a sum of disjoint intervals. By

(2:1) each interval 7,, contains a closed interval 7}, such that
M) > M(ins) — €/2+"+1 Then if

Pn
Au= ) i
h=1

with p, sufficiently large, we shall have

(2:4) m(A,) > m(C,) — ¢/2".

Now let 4, = [] 4x. Then A, C A, C 42 C Co C Cpoy,and
k=1

(2:5) M4.=114.C [I¢.=Z.

nml n=1 nel
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We shall prove by induction that
(2:6) m(4,) > m(C,) — e (l - l)

2»

For n = 1, this inequality is the same as (2:4). Now since 4,
and Any1 are both subsets of C,, we have

m(_A,.+1) + 7_)1(11,. - An-{-l)_§ m(Cu)y
Mm(An) = M(AnAnir) + m(Ay — Anyy).

By adding the last two statements and transposing the term
m(Cn), we obtain

m(f.i-,..,.l) = m(J‘InAwl) 2 m(ﬁ,,) + m(Anp1) — m(C.).

From this and (2:6), and (2:4) with n replaced by n + 1, we
find that

- 1
m(ar) > m(C) = (1= ) + mCurd — 5l m(C

= m(0n+l) - € (] - ?14-—1)’

and this is (2:6) with n replaced by n 4+ 1. Thus we have for
every n,

(2:7) m(d,) > 6 — e
Now let C be a sum of intervals enclosing Z, and such that
(2:8) m(C) < (6 — ¢)/2.

By (2:1) we may suppose that the intervals composing C are
open. From (2:7) and (2:8) and Lemma 2 it follows that the set
(4, — C) is nonnull for every n. Each of these sets is bounded
and closed, and they form a decreasing sequence. Hence they
have at least one point in common by Corollary 3 of Theorem 12
in Chap. IV. But this contradicts (2:5), and thus the lemma is
proved.

tTwo examples of sets of measure zero were mentioned on
page 89. Another example may be constructed by selecting
from the interval [0, 1] the points z in whose decimal representa-

tion z = z a;10~7 the sequence (as1) of odd-numbered digits is
ultimately periodic. The set of all points z = z az,10~% is con-
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tained in intervals remaining after removing a set of intervals
with length sum 0.9, 0.99, 0.999, . . . , and hence has measure

zero. The points y = z 02;—110~¥=D gre rational, and so the

set of all points of the form x = y + z is the sum of a denumer-
able infinity of sets of measure zero.

tFrom a two-dimensional interval I we may select two sets
of measure zero as follows. Let E; consist of all points (z, y)
with z and y both rational and having the same denominator.
(It is understood that all rational numbers are represented in
their lowest terms.) Iet E, consist of all (z, y) \\%nx rational
and y irrational, or y rational with a different denominator from
that of z. Each of these two sets is of two—dimensioﬂal measure
zero, and each is dense on I.  The set E; has only a finitc number
of points on each parallel to a coordinate axis,

3. Definition and Properties of the Integral.—I.et O be an
arbitrary class and let P denote a property that may be possessed
by some subclasses of Q. The property P is said to be exten-
sionally attainable in £ in case for every subclass Q4 of Q there
exists a subclass Q. containing Oy and having the property P,
and such that every other subclass Qs containing Q, and having
the property P contains Q1. The class Q; may be described as
the minimum class containing Qo and having the property P,
and when it exists it is called the extension of .. to have prop-
erty P. In case O is the interval J, the property of being an
open sct is not extensionally attainable, while the property of
being a closed set is extensionally attainable. The following
necessary and sufficient condition for extensional attainability is
easily proved.

Lemma 9. A property P is extensionally attainable in Q if and
only if

(1) < itself has the property P;

(ii) The logical product of a family of subsets, each having the
property P, itself always has the property P.

Now let £ be the class of all functions ¢ which are single-real-
valued in the interval I. We shall be interested in the following
operations on functions in Q:

1. Addition: ¢; + ¥..
II. Multiplication by a constant: ay.
I11. Multiplication: ¢ ..
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IV. Logical addition: ¢35 = ¢ V ¢, where for each z the value
¥s(z) is the greater of ¥1(z) and y,(z),
V. Logical multiplication: ¥5 = y; A ¥, where for each z
the value ¥3(z) is the lesser of ¥,(x) and Yu(z).

We shall sometimes wish to admit functions ¢ which have
infinite values, and we could adopt conventions as to the values
obtained by adding and multiplying infinite values, but this will
not be necessary.

It is clear that the property of being closed with respect to an
arbitrary one of the operations I to V is extensionally attainable
in Q. Moreover the extension of a class Q is the class of all
functions obtainable from those in Q, by a finite number of
applications of the operation in question. A class which is
closed with respect to both the operations I and II is called
linear.

We note that a class Qg which is closed with respect to the
operations I1 and IV is also closed with respect to the operation
of taking the absolute value, since

Wl =yV (=¥

A very convenient concept is that of the characteristic function
¢z of a set E, which is defined to have the value unity at elements
z of E, and the value zero elsewhere.

Let Qo be the class of all characteristic functions ¢4 of sets
A in ¥, and let the extension of Qg to be linear be denoted by &.
The functions in the class & are frequently called step functions.
We shall use the notation a(r) for step functions. It is easily
seen that the class  is also closed with respect to the operations
I1I to V. The integrals of step functions are defined in the
obvious way as finite sums. Let the fundamental interval I be
represcnted as a sum of disjoint intervals ¢ in any way such that
the function « has the constant value as on %. Then

/1 a(z) de = 2 apm(in).

When convenient, we may also use the notations

Lb a(z)dx  or f adz

for this integral. It is easy to see that the value obtained for
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the integral is the same for all decompositions of the interval I
subject to the conditions stated.

An operator K(¢) with domain ), is said to be linear in case
L is linear, and

KW+ ¢2) = K{¥1) + K(¥),
K(ayy) = aK({),

for every 1 and ¢ in Q, and every constant a. f An operator
K(¥) is said to be positive in case K(¢) = 0 wheneyer y(z) = 0
forall zin I. A positive linear operator has the fzxiowing addi-
tional properties: \

K@) < K§»)  whenever  y4(z) S 2(3);
K@) = K(l¢]) whenever [¢| is also in Q.

The integral
K@) = [adr

is obviously a positive linear operator on the class & of step
functions. '

*In case the interval function m(7) is not the length of the
interval, it is more appropriate to replace the symbol dz occurring
in the notation for the integral by dm, in order to indicate the
dependence of the integral on the choice of m. In this chapter
and the next we shall use the notations indicated above. But
when immediate generalization to the case of an arbitrary interval
function satisfying the conditions stated in Sec. 2 is not possible,
that fact will be indicated by a dagger ().

*Note that a step function ¢ may be such that it takes a
particular value a at only a single point. When the value of the
interval function m is zero for every degenerate interval, an
arbitrary change in the value of a at a finite number of points
does not affect the value of the integral, but in other cases it may
affect it.

The notation E[ . . . ] is used to denote the set of all points
of the interval I at which the property in the brackets holds.

A property P of points z is said to hold almost everywhere
in case there exists a set Z of zero measure such that P holds
on the complement of Z. For example, a function ¢ is finite
almost everywhere in case the set E[Y(z) = + «] is a set of
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measure zero. Also, lim ¢, = ¢ almost everywhere in case
lim ¥a(z) = ¥(z) with the possible exception of the points z in a

n
set Z of measure zero.

A function p is said to be measurable in case there exists a
sequence (a.) of step functions such that lim a, = p almost

n

everywhere. The class of all measurable functions p will be
denoted by It. We note that a measurable function x may have
infinite values. We show later (Theorem 4, Corollary) that the
class I is the extension of the class & to be closed with respect to
the operation of taking limits in the sense of “almost everywhere.”

A function ¢ is said to be essentially bounded or almost
bounded in case there exists a sct Z of measure zero such that ¢
is bounded on the complement of Z. The subclass of M con-
sisting of those functions x which are essentially bounded will be
denoted by Ms. The subclass consisting of those functions u
which are finite almost everywhere will be denoted by Ms.
Then Ms C My C M. If pisin M5, and k and K are constants
such that ¥ = u(z) £ K almost everywhere, then there exists a
sequence {a.) of step functions such that k¥ < e, (zr) < K for all
z and lim a, = u almost everywhere. This is easily verified

since the class & of step funclions is closed with respect to the
operations IV and V.

A sequence of functions (¥,) is said to converge almost uni-
formly to a function ¢ in case for every positive e there exists a
set C in € such that m(C) < ¢ and lim ¢, = y uniformly on the

complement of C. Here it is understood that y has finite values
on the complement of C. The relation of this useful type of
convergence with convergence almost everywhere is partly indi-
cated in the following two theorems, the second of which is a
special case of a theorem of Egoroff.
TrEOREM 1. If lim ¢, = ¢ almost uniformly, then lim ¢, = ¢
n n

almost everywhere. N
Proof —Let C, correspond to ¢ = 1/¢ in the definition of
almost uniform convergence, and let E = [] C;. Then lim y,

= ¢ on the complement of E. Since E C C, and m(C,) < 1/¢
for every ¢, E is a set of measure zero.
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THEOREM 2. Let (o) be a sequence of step functions converging
almost everywhere to a function p which is finite almost everywhere.
Then lim a,, = u almost uniformly.

n
Proof—Let Z denote the set of points at which either the limit
p is infinite or the convergence of a, to u fails. Iet

o0

Coa= ) Bllaata) — @) > 1/l

hij=k

The sequence (Ci,) is nonincreasing with rcspecl‘)‘ to k, and

H Cxq C Z for every g. Hence by Lemma 8, lim 7;%((]/;.,) = 0.
k=1 i

Thus for an arbitrary positive number e and for each ¢ there
exists an integer k, such that m(Cr,,) < /2. Let Cy be a set

in € including 7, with m(Cy) < e. If weset C = Cy + Z Chyoy

we have m(C) < 2¢ by Lemma 4, and |ax(x) — u(x)| < 1/q on
the complement of C for h > k,.

CoRroLLARY. Let (a,) be a sequence of step functions converging
almost everywhere to a function p and let K, = Elu(z) = + «],
E_ = E[p(x) = —x]. Then for cvery € > 0 there cxists a set C
in € with m(C) < ¢, and such that for every & > 0 there exists an
integer q such that when n > q, a.(x) > 6 on E — C, and a,(z)
< —donmE.—-C.

Proof—Let,

. L a@ N 16)
3:1) W@ = 1 Fla@, PO T TTREl

Then the hypotheses of the theorem are fulfilled by (a,) and g,
so that when ¢ is sufficiently great, andn > ¢, and zisin B, — C,
we have
1
1+ a,.(:c)

and hence a,(r) > 8. A similar manipulation gives the cor-
responding inequality on E_ — C.

The following theorem gives the definition of the integral and
its justification, for essentially bounded measurable functions.
This case is taken up first because it is somewhat simpler than
the general case. But Theorems 3 to 5 could be omitted.

“"Tx)<a+1
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THEOREM 3. Let (an) be an essentially bounded sequence of
step functions converging almost everywhere to a function u. Then
the sequence of integrals

(3:2) fr a, dx

has a finite limit which depends only on the function u and is
denoted by fI pdr.

Proof —Suppose |a,(z)] £ K, and let e be an arbitrary positive
number. Then by Theorem 2, there exists a set ¢ in € and an
integer n such that m(C) < ¢/4K, and |a,(z) — a,(z)| < ¢/2m(I)
whenever p > n, ¢ > n, except on a subset of C. Hence from
the definition of the integral for step functions it follows that

|f1a,,dm— j;oz.,dx‘:

whenever p > n, ¢ > n. This establishes the existence of the
limit of the sequence (3:2). To show that it depends only on
the function g, let (o)) and (a))) be two sequences satisfying
the conditions of the theorem, and converging almost everywhere
to the same function y. Form a new sequence (a,) by taking
terms alternately from (o) and (a!)). Then the sequences

! n
Jien e, fieaz, [ ey an

all converge, and since the second and third are subsequences
of the first, they all have the same limit.

The next theorem gives a sufficient condition for term-by-term
integration of sequences of functions in the class M.

THEOREM 4. Let (u.) be an cssentially bounded sequence of
measurable functions converging almost everywhere to a function y.
Then ¢ is measurable and essentially bounded, and

lim/;u,.d.r = ﬁnﬁdx.

Proof —Let K be a constant such that |u.(z)| £ K almost
everywhere, for all values of n. For each n there is a sequence
of step functions (a) such that lim ay, = u» almost everywhere,

k

and |aua(z)| £ K. Corresponding to a sequence of integers
(ka), let ar . be denoted by &,. By Theorems 2 and 3, for every
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n there exists a set C,, in € and an integer k, such that

m(Cn) < 1/27,
|an(z) — pa(x)] < 1/2°on I — C,,

3:3) |fanar = [ poda] <1720
Let

éq = z Cm

ne=g+1

so that m(C,) < 1/27. Then
(3:4) lim (&, — u,) =0

on I — C, for every ¢, and hence (3:4) holds almost everywhere,
and lim &, = ¢ almost everywhere. Thus ¢ is in s and

lim /;&,, dz = _/I‘Pd.r by Theorem 3, and from this and (3:3)

the final conclusion follows.

CoroLLARY. If (k.) 1s a sequence of measurable functions whose
limit is almost everywhere a function ¥, then ¥ ts also measurable.

This follows from the theorem by the use of the same type of
transformation (3:1) as was used in the proof of the Corollary
of Theorem 2.

THEOREM 5. The class My of essentially bounded measurable
functions is closed with respect to the operations I to V. The class
Mz of measurable functions which are finite-valued almost every-
where s also closed with respect to these operations, provided it s
agreed that the values of sums and products may be arbitrarily
assigned at points where they may be undefined. The tntegral is a
positive linear operator on the class Ms.

These statements follow readily from the fact that the opera-
tion of taking limits is commutative with each of the operations
ItoV. A sum or a product in the class MM may lead to one
of ‘the indeterminate forms © — o or 0-», but this can happen
only at the points of a set of measure zero.

It is clear from the definitions that changing the value of a
function at a set of measure zero cannot alter its measurability,
integrability, nor the value of its integral. A function u may
even remain undefined on a set Z of measure zero, but we shall
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/Iudx

when u is integrable. In this situation, many authors prefer
to make the agreement that x shall be set equal to some con-
venient value (say zcro) on the set Z.

We now proceed to the case when the assumption of bounded-
ness is omitted. However, another hypothesis must take its
place. In order to introduce this we find the following notation
convenient, namely,

still use the symbol

/Aadx= fadudx,

where the set 4 is in A, and ¢. is its characteristic function.
The product a¢s is then also a step function. When the set 4

is regarded as variable, /;1 a dz is called the indefinite integral

of a. It is evidently always absolutely continuous as a function
of 4, in the sense that

lim o dr = 0.
m(A)=0
The integrals [a,dr of a sequence arc said to be absolutely
continuous uniformly with respect to » in case

lim a,de =0
m(4)=0

uniformly with respect to n. This definition will later be
extended to more general functions and sets. The phrase
“equiabsolutely continuous” is sometimes used for this notion,
which is related to the notion of equicontinuous functions
described in Chap. VII. We shall need two preliminary results
before proceeding to the generalization of Theorem 3 to the
unbounded case.

fLEmMMA 10.  If the integrals / , @n dz are absolutely continuous

uniformly with respect to n, then they are bounded uniformly with
respect to A and n.

*This lemma and its proof hold also for generalized measure
functions in any number of dimensions, provided that the measure
function m satisfies the condition that the fundamental interval I
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can be divided into a finite number of subintervals of arbitrarily
small measure. When the interval I is one-dimensional and the
measure m(7) is obtained from a nondecreasing function f(z), the
preceding condition is satisfied if and only if f(z) is continuous.

Proof —Suppose that & is such that l / 4 O dT l< 1 whenever

m(A) < 5. Let the fundamental interval 7 be divided into K
subintervals each of measure less than 8. Then K 15,3 a bound for
the integrals. (

Lemma 11, Suppose that the integrals A a, dx\arc bounded
uniformly with respect to A and n, and that lim o,\= p almost

\
A

everywhere. Then u is finite almost everywhere. \

Proof.-—Suppose that the set B, = Eu(zx) = + oc) is not of
measure zero, that is, suppose that there exists a positive e such
that m(C) > 2¢ for every set C in € including E,. Correspond-
ing to e let Cy be a set in € satisfying the conditions of the Corol-
lary of Theorem 2, so that m(Co) < e. For an arbitrarily large
number § the set of points at which a,(x) > 8§ is a set 4, which
includes (E+ — C,) for n sufficiently large, and hence m(4,) > ¢,
and ‘

[4' a, dr > €d.

This contradicts the boundedness of the integrals. A similar

proof shows that the set E[u(r) = — «]is of measure zero.
tTHEOREM 6. Suppose that (a,) is a sequence of step functions

converging almost cverywhere to a function p, and that the integrals

(3:5) fA a dz

are absolutely continuous uniformly with respect to n. Then the
sequence (3:5) converges uniformly for sets A in N, and the value
of the limit depends only on the function p and the set A, and 18

denoted by the symbol /:1 wdx. Moreover, u s finite almost

everywhere.

*The preceding theorem holds also for general measure func-
tions with the added hypothesis that the function u is finite
almost everywhere, or that the sequence (3:5) s uniformly bounded.
Compare also the remark following Lemma 10.

Proof —Let ¢ be an arbitrary positive number, and let &
correspond to e as in the definition of uniform absolute continuity.
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By Lemmas 10 and 11, the function g is finite almost everywhere,
so that by Theorem 2 there cxists a set € in € and an integer n
such that m(C) < & and the sct 4,, = E[|a,(z) — a,(x)| > ¢ is
included in C whenever p and ¢ are both greater than n. For
an arbitrary set A in®andp > n,¢ > n,letusset B,, = A+ A4
D,, = A — Ape. Then m(B,,) < 5, and

[ arde = [, e dxl <| wa oy da] + | [, e ]

+ 1,[1):-« (ap — a,) da,
S 2¢ + em(A) £ €2 + m(I))].

Pay

Thus the Cauchy condition for the uniform convergence of the
sequence of integrals is satisfied. That the value of the limit
depends only on the function u and the set 4 is shown by the
same device as in the proof of Theorem 3.

Functions p satisfying the hypotheses of Theorem 6 will be
called integrable (or integrable in the sense of Lebesgue). They
are frequently called summable functions. The class of all
such functions will be denoted by ¢, and the functions them-
selves will sometimes be denoted by the letter X. It was shown
in the proof of the theorem that an integrable function X is finite
almost everywhere. It is clear that the indefinite integral

/ L Ndz is always absolutely continuous, and that the definition
of uniform absolute continuity applies at onee to sequences
( / n dx) of integrals of integrable functions.

In order to justify the use of the symbol L A dz, we should note

that its value is independent of the choice of the fundamental
interval I in which the set A is contained. Let I* be an interval
containing I, and let the measure function m be defined on I'*
consistently with its values on /. Let ¢. be the characteristic
function of A, and let (@) be a sequence of step functions con-
verging to \ almost everywhere on I. Then (a.¢s) converges
to N4 almost everywhere on I*, and in this statement it does
not matter what values are assigned to a, and N on I* — I,
Since

ff ayda de = /;* a,¢a dz,
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it follows that the value of _/; \ dz is independent of the choice of

the fundamental interval I containing 4.

*The preceding conditions are not satisfied in the following
example. Let f(z) =zon0=L2=<1,flx)y =2ronl <z =2
Let I = [0, 1], I* = [0, 2]. Then the value of the interval func-
tion m(I) obtained from the nondecreasing function f when I'* is
the fundamental interval is 2, but when I itself is the fundamental
interval, m(I) = 1.

It should be remarked that the class £ of Lebesgue-integrable
functions is not obtained, either from the class & of step fune-
tions or from the class € of continuous functions, by taking the \
limits of sequences which converge everywhere, even though \\
this process is indefinitely rcpeated. Compare the references in -
Chap. VII, Sec. 5.

tTHEOREM 7. Suppose that (\.) 18 a sequence of integrable
Sunctions converging almost everywhere to a function p, and that the
integrals

(3:6) [A A dz

are absolutely continuous uniformly with respect o n. Then u is
integrable, and the sequence (3:6) converges to / |, 1 dz uniformly for
sets A in U.

*As before, the theorem holds also for general measure functions
with the added hypothesis that u s finite almost everywhere, or
that the sequence (3:6) is uniformly bounded.

Proof—For every n there is a sequence (ar.) such that lim ax,

k

= N\, almost everywhere, and such that the hypotheses of
Theorem 6 are satisfied. Corresponding to a sequence of integers
(ks) let ax,. be denoted by &,. By Theorems 2 and 6, for every
n there exists a set C, in € and an integer &, such that

m(C,) < 1/2»,
|@n(x) — Ma(z)] < 1/2" on I — Ca,
@7 |[, &ndz — [ \da] < 172" for every set 4 in 3.
As in the proof of Theorem 4, it follows that lim (&, — \,) = 0

almost everywhere, and hence lim &, = p almost everywhere.
By hypothesis, for every positive e there exists a positive & such
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that UA s dxl < ¢ for every n and every set A with m(4) < &.
Thus by (3:7), we have

(3:8) |Lmﬂ<%

whenever m(A) < § and 1/2* < e. Since only a finite number
of values of n fail to satisfy the last condition, there exists a
positive 8; = & such that (3:8) holds for all values of n provided
only that m(4) < 8. Thus the hypotheses of Theorem 6 are
satisfied by the function p and the sequence (&,), so that u is
integrable, and the final conclusion of the theorem is obtained by
use of (3:7).

THEOREM 8. Under the same agreement as in Theorem 5,
the class ® of integrable functions is closed with respect to the oper-
ations 1, 11, IV, and V, and in particular the absolute value of an
integrable function is integrable. The product of an integrable
Junction by an essentially bounded measurable function 1s integrable.
Moreover, the integral is a posttive lincar operator on the class R.

Proof—The proof is like that of Theorem 5, except that now
the preservation of the property of uniform absolute continuity
under the operations in question must be verified. To show this
for the operation IV of taking the logical sum, we note that

/A (@1 V ag) dr = j;loqu-l- Lzazdx.

To show this for the operation of multiplying by a bounded
function, let the integrals L a, dx be absolutely continuous
uniformly with respect to n, and let the sequence (&,) be uni-
formly bounded, |a.(z)| < K. Then if ‘ L an d:cl < e whenever

m(A4) < §, I f OnBin d:c‘ < 2Ke whenever m(4) < 8.

*For the case of a general measure function it is necessary
also to verify the preservation of the property of uniform bound-
edness of the integrals under the operations in question.

The fact that the absolute value of an integrable function is
integrable means that the Cauchy improper integral of ele-
mentary calculus is not included as a special case of the Lebesgue
integral. A discussion of nonabsolutely convergent integrals
may be found in Saks [1], Chaps. 6 to 8, or Hobson [3], Vol. 1,
Chap. 8.
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THaEOREM 9. If \ is iniegrable, there exists a sequence () of
step functions such that im a. = X\ almost everywhere, and

mnﬁhf—nm=o.

Proof —We can in fact prove that any sequence (a,) used in
the definition of [\ dx satisfies the requirement stated. For,
since

Jilaw=Nde 2 [} laldz + [, N dz,

it is easily seen that the integrals on the left are absolutely
continuous uniformly with respect to n», and then it is only
necessary to apply Theorem 7.

TrroreM 10. If \ s an integrable function and p is a measur-
able function such that |u(x)| £ N(x) almost everywhere, then p is
also iniegrable.

Proof—Since by Theorem 8, u is integrable if and only if the
functions u V 0 and p A 0 are both integrable, it is sufficient to
consider the case when p = 0. Let lim @, = X almost every-

n
where, and let the sequence (a,) satisfy the conditions of Theorem
6. Let lim @, = u almost everywhere, and let a, = 0, @, = 0.

Set B, = an A @.. Thenlim 8, = p almost everywhere, and the

n
sequence (B,) satisfies the conditions of Theorem 6.

As an immediate corollary of Theorem 8 we have the follow-
ing uscful criterion for the uniform absolute continuity of a
sequence of integrals.

THEOREM 11. Let N\ and each \. be integrable, and suppose

that [\o(z)| £ No(x) almost cverywherc. Then the integrals / 4 Mndz

are absolutely continuous uniformly with respect to n.

The following example shows that the hypotheses of Theorem 7
may hold when there does not exist an integrable dominating
function \o(z) as described in Theorem 11. Let N\.(z) = n for
1/n £ 2 2 1/(n — 1), Mu(x) = 0 for all other values of x. Then

ﬁ)l Mdx = 1/(n — 1), and it is easy to verify that the integrals
L M\ dz are absolutely continuous uniformly with respect to n.
However, Lu.b. \2(z) = 1/z, which is not integrable. A neces-
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sary and sufficient condition that a family of integrals be abso-
lutely continuous uniformly will be given in the next chapter.
Another useful ecriterion for term-by-term integration of
sequences is contained in the following theorem:
THEOREM 12. Let the sequence (N.) of integrable functions be
nondecreasing with respect to n, and let the limit of the sequence be
denoted by u.  Then p is integrable if and only if the sequence of

integrals ( /1 M d:c) s bounded, and in this case

(3:9) lim /A Ao dz = [A udz

uniformly for sets A in N.
Proof.—If u is integrable, we have M(x) < M(x) S u(z), so
that

Jmde = [rndr s f,ydx,
and also (3:9) holds, by Theorems 8, 11, and 7. To prove the
converse, we note that the bounded and nondecreasing sequence
of integrals fl M dz must satisfy the Cauchy condition for con-
vergence, so for an arbitrary positive ¢, there exists an integer N
such that /1 (A\n — An) dx < efor n > N, and hence

(3:10) [A (A — Aw) dx < ¢ forn >N, A C L

By the absolute continuity of the individual integrals /A An dz,

there exists a positive number 8§ such that

(3:11) /A Mdr <e form(A) <4, n < N.

By combining (3:10) and (3:11), we obtain /A A dx < 2¢ for

m(A) < 8, and all n, so the integrals are absolutely continuous
uniformly with respect to n, and we may apply Theorem 7.
We remark that under the hypotheses of Theorem 12 it is

sometimes convenient to write /] udx = + « when the sequence

[1 Andzr is unbounded. In this case we do not say that p is
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integrable, but rather that its integral is defined and has the

value + . '
A useful theorem, known as Fatou’s lemma, may readily be

derived from the preceding results.
Turorem 13. Let Ao and N, be inlegrable, and set ¥(z) =
lim inf A.(x), 6(x) = lim sup A.(z). If Ao(z) £ Nu(x) almost

everywhere, and lim inf /1 Mdz < 4 o, then ¥ is integrable, and
(3:12) [, ¥do < timinf [\, da.

If Mo(z) = Na(x) almost ererywhere, and lim sup / I Andz > — 0,
then 6 is integrable, and

6dr = lim sup [ \,dz.
/; /;

Proof—Let pnp(z) = glbAu(x) for n S m < p, v(x) =
lim pap(z). Then each p,, is integrable, by Theorem 8, and each
4

v, is integrable, by Theorem 12. Since /I vadr < /1 Am dz for

m > n, _[1 v, dz is a bounded sequence, so (3:12) follows from

another application of Theorem 12. The final statement of the
theorem is obtained from (3:12} by changing the signs throughout.

tTaEOREM 14. Let ¢ be a bounded Riemann-iniegrable func-
tion. Then ¥ is also integrable in the sense of Lebesgue and the two
integrals of Y have the same value.

Proof —We shall use the criterion of Chap. VI, Theorem 7,
that ¢ is Riemann-integrable only if it is continuous almost
everywhere on I. Take a sequence (P,) of partitions of I, with
norm tending to zero, and let

8P = ) $lam(i)
P
be the value of a Riemann sum associated with P,. Let

Qn = IZ..: Y(xn) bis,

where ¢;, is the characteristic function of the interval 4,. Then
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S(Pn) = Lan dz, and since lim a.(z) = ¢(z) at every point z

where y is continuous, the desired result follows from Theorem 3.

*The arguments of Chap. VI, Sec. 1, are extensible without
much change to the case of functions f(z) of k variables, defined
and bounded on the fundamental interval I, provided the par-
titions of I are restricted to those obtained by partitioning each
axis. Then the argument used in proving the last theorem
applies at once in this case, and is extensible also to the case
when the partitions P of [ are partitions into a finite number of
measurable” sets E,, and the norm N(P) is the maximum diam-
eter of a set Ej of the partition. This shows that the same result
is obtained in defining the multiple Ricmann integral when only
the restricted type of partitions is admitted, as when a more
general type is used.

tFrom Theorems 14 and 4 it follows that, if a bounded sequence
of Riemann-integrable functions converges to a Riemann-
integrable function, the corresponding sequence of integrals
converges to the integral of the limit. This result was first
proved by Osgood® without use of the Lebesgue integral.

4. Measurable Sets and Functions.—A set E is said to be
measurable in case its characteristic function ¢z is a measurable
function and, by definition,

(4:1) m(E) = [, oz d.

We shall let € denote the class of all measurable sets E.

A class £ of subsets of the interval I is said to be additive in
case it contains (a) the sum of every denumerable family of sets
in ®; (b) the complement of every set in &; (¢) the null set. Such
a class § is sometimes called completely additive, in contrast to
the finitely additive classes in whose definition (@) is replaced by
(a’) the sum of every finite family of sets in . Every additive
class is evidently also closed with respect to the operations of
taking differences and denumerable products. The property of
being additive is extensionally attainable in the class 0 of all
subsets of I, by Lemma 9 in Sec. 3. The extension of the class

1 The notion of measurable set is defined in Sec. 4.

t “Non-uniform Convergence and the Integration of Series Term by

Term,” American Journal of Mathematics, Vol. 19 (1897), pp. 155-190. In
this memoir all the functions are supposed to be continuous.
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of subintervals of I to be additive is called the class of Borel-
measurable sets. Every open set is Borel-measurable, and so is
every closed set.

TuroreM 15. The class € of measurable sets vs additive. If
the sets of the sequence (E,) are disjoint and measurable, we have

w(3 2 = S
The proof is based on Theorems 5 and 4. From the final
statement of the theorem it follows that the definition of measure
given in formula (4:1) is consistent with the definition previously
given for sets in C. It is clear also that scts of measure zero
may be disregarded in considering the measurability of a set E. |
TuroreMm 16. For an arbitrary sequence (E.) of measurable -
sets, we have
m(lim inf E,) < lim inf m(£,) =< lim sup m(E,)
< m(lim sup E,).

Proof —Let B = lim inf K,, S = lim sup E,. Then
¢r = lim inf ¢, ¢s = lim sup oz,

where ¢ denotes the characteristic function.  Hence the theorem
follows from Theorem 13.

THEOREM 17.  For cvery measurable set E and every positive e
there exists a sct C' in C and a set A in N such that m(C) < ¢ and

(4:2) A-CCECA+C.

Proof —Let (a.) be a sequence of step functions converging
to the characteristic function ¢ almost everywhere. Then by
Theorem 2, lim a, = ¢ almost uniformly, so that there exists

n
a set C in € and an integer k such that m(C) < e and |ax(z)
— ¢x(z)| < % on the complement of C. If we now let A4 denote
the set of points where a;(x) > £, we find that (4:2) is verified.
CororrarY. If E is measurable, then

m(E) = g.l.b. m(@) for all open sets G.D E
= Lu.b. m(F) for all closed sets F C E.

Conversely, when g.1.h. m(@) = Lu.b. m(F), then E is measurable.

Proof —Since m(A — C) + m(C) = m(4 + C), we have m(4
—C) >m(E) —¢ m(A+C) <m(E) +e By (2:1), the set
C may be supposed open.  Also there is a closed set A; and an
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open set A. such that 4, C A C 4ym(4:1—C) >m(E) —¢,
m(As + C) < m(E) + e

From the above it follows that, when m(E) = 0, E must be a set
of measure zero as defined in Sec. 2. To prove the last part of the
corollary, let (G.) be a nonincreasing sequence of open sets such
that lim m(G,) = g.Lb. m(G), and let (F,) be 2 nondecreasing
sequence of closed scts such that lim m(F,) = Lub. m(F).

Then by Theorem 16, m ([]6.) = lmm(@), m (3 P
= lim m(F,). But[[G, D E D Y Fandsom (16, - ) 7.)
=m (“ G, — E) = 0. Thus E is measurable since it differs
from [ G, by a set of measure zcro.

*The corollary suggests another notion that is oceasionally
useful—that of exterior measure. For an arbitrary set E we
define the exterior measure m, (/) by the formula

m(E) = glbh. m(() for all open sets @ D E.

We note that for a measurable set the exterior measure coincides
with the measure. It follows that an arbitrary set E is included
in a product (5 of a sequence of open scts such that m.(E)
= m(@;). By usc of this fact we can obtain the following partial
extension of Theorem 16:

*TaroreM 18.  For an arbitrary sequence of sets E.,, we have

m.(lim inf E,) < lim inf m.(¥,).

If N is integrable and £ is a measurable set, it follows from
Theorem 8 that A¢e is also integrable. Thus the definition

(4:3) fordz = [rouds

is valid, and we may regard the integral as a function of measur-
able sets. The next two theorems show that it is an additive
Junction which is also absolutely continuous.

TuroreM 19.  Let \ be integrable and let the sets of the sequence

(E.) be measurable and disjoint. Let E = ZE,.. Then

(4:4) fE ANdz = 2 . N dx.
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Proof—We have

n

5 e

k=1

=\,

X¢E = 1im Z X¢E“

" ok=1
so that the formula (4:4) follows from Theorems 11, 7, and 8.
We have already noted, following Theorem 6, that when A\
is an integrable function, /; M\ dz is absolutely continuous as a
function of sets A in 2. This property extends readily to
j; M\ dz as a function of measurable sets E, as follows from the
next theorem.
TaeorEM 20. Suppose that N\ is integrable and that l ‘/‘; kdxl

< e whenever m(A) < 6. Then
|
l[EXdazi Ze fE ] dzr £ 2,

Jor every measurable set E with m(E) < é.
Proof—From Theorem 17 it follows that there is a sequence
(A,) such that lim ¢4, = ¢r almost everywhere, and lim m(4,)

= m(E). Then lim A¢s, = N¢r almost everywhere, and by
Theorems 11 and 7,

Ii -

im [ Ndz = [,\da.
Also

JoNdz = [, ndr ~ Jo N dz,

where Mz) = 0 on E; and Mz) < 0 on E,.

LemMma 12.  The following conditions on a function ¢ are all
equivalent:

(a) For every finite number c the set E[y > c] 1s measurable;

(b) For every finite number c the set E[y = c] is measurable;

(c) For every finite number c the set E[¢ < c] is measurable;

(d) The set E[y = + ] is mcasurable, and for every pair of

finite numbers ¢ and d the set Elc £ ¢ < d] 1s measurable.

Proof.—The proof is based on Theorem 15. To show that

(a) implies (b), we note that

Ey 2] = nE[\(/ >c¢— 1/n].
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Since E[y 2 c] and E[y < ¢] are complementary sets, (b) implies
(¢). To show that (d) implies (b), we note that

Bz =Ey=+=]+ ) Bet+n<y<ctn+ll

0

It is clear that other equivalent conditions are obtainable from
(b) and (d) by reversing the direction of the inequalities and
changing + © to — « in (d).

The class of all functions ¢ satisfying the conditions of Lemma
12 will be denoted by RN. In Theorem 21 below it is shown that
the class M is identical with the class M of all measurable fune-
tions. The proof depends on the following closure property of
the class N.

Lemma 13.  Let (Yn) be a sequence of functions in M.  Then the
following functions:

Lub. ¢, g.lb. ¢, lim sup ¢n, lim inf ¢,

are all in N.
Proof—Let ¥ =1lub. Yo Then ElY >cl =) Elfn > cl.

Thus ¢ is in N by Theorem 15. The remainder of the lemma is
proved in a similar way.

THEOREM 21. The class N s identical with the class M of
measurable functions.

Proof.—1t is clear that every step function « is in the class 0,
and a function equal almost cverywhere to a function in the
class M is likewise in the class N. Hence M C N by Lemma 13,
Now let ¢ be an arbitrary function in 9%, and let ¢, denote the
characteristic function of the set Elk/n £ ¢ < (k + 1)/n], ¢ns
the characteristic function of the set E[y = n)], and ¢,_ the char-
acteristic function of the set E[¢ < —n]. Each of these func-
tions is in M, by the definition of the class 9t and of measurable
sets. The function

n2—~1
Mn = 2 §¢nk+n¢n+ — Ny

k= —n?

is a linear combination of functions in I and so is in M, and
thus ¢ = lim u, is also in M by the corollary of Theorem 4.
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The class 8 of all functions satisfying the conditions of Lemma
12 when the term ‘“measurable’ is replaced by ‘‘ Borel-measur-
able”’ is called the class of Borel-measurable functions. It is
evidently always a subclass of the class M. It coincides with
the sum of the classes of Baire described in Chap. VII, Sec. 5.V
For a proof that there exist nonmeasurable functions, as well as
functions in the class M — B, see McShane [2], pages 237-241.@

TrEOREM 22. Let the measurable function u be finitc almost
everywhere and let € be an arbitrary positive number.  Then there
exists an open sct C in € such that m(C) < e and the section of p
defined on the complement of C 7s continuous.  Hence there exists a
function ¢ continuous on the interval I and identical with p on the
complement of C.

Proof.—l.et o be a step function, and consider an interval ¢
(degenerate or nondegenerate) on which a is constant.  If 7 does
not consist of only one point, let B denote the boundary of 7, and
choose a closed subinterval 4y of 7 such that ¢ — 45 is eontained
in the neighborhood N(B; ). When / reduces to a single point,
take 7o = 7. Set v(r) = a(r) on each such 7, and extend v,
to be continuous. Let A, denote the sum of the elosed subinter-
vals 4p. Then if lime = 0, lim (/ — A.) = A, and so lim m (/

n n

— A.,) =0, by Lemma 8. Hence the theorem holds for step
functions. Now let (a.) be a scquence of step functions such
that lim a, = u almost everywhere. Then by Theorem 2 there
exists a set Cy in € such that m(C,) < ¢/2 and lim «, = u uni-
formly on I — C;. The set (1 may clearly be required to be
open. By the first part of the proof, for each n there is an open
set A, such that m(4,) < ¢/2"+!, and the scction of ason I — A,

is continuous. Let C = C, + EA,.. Then m(C) < ¢, the sec-

tion on each a, on I ~ C is continuous, and lim a, = y uniformly
onl — C. Hence the section of g on I — (" is continuous. The
final statement in the theorem follows from Theorem 21 of
Chap. VII.

1See Lebesgue, “Sur les fonctions représentables analytiquement,”
Journal de mathématiques (Series 6), Vol. 1 (1905), pp. 139--216, especially
pp. 156-165.

2 McShane’s text states only that the function he exhibits is not in a Baire
class with finite index, but a minor modification of the proof shows that
it is not in any Baire class.
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Two theories of integration are said to be consistent if they
yield the same class of integrable functions with the same
value for the integral of each. It is not difficult to show that,
if two theories have the same measure for intervals and, in each,
formula (4:1) holds for intervals, the integral is a lincar operator,
and Theorems 4, 5, 12, 15, 22 and Corollary of 17 hold, then the
two theories are consistent. For then the measure of open sets is
the same in both, and sets of measure zero are the same for both.
By Theorem 22 the class of measurable functions finite almost
everywhere is the same for both.  The integrals of step functions
and of continuous functions are the same for both, and hence the
integrals of bounded measurable functions arc the same for both,
by Theorem 4. By Theorem 12 we proceed to the same result for
the class of all integrable functions.

In particular, our theory is consistent with that originally
developed by Lebesgue.  Also, a consistent theory is obtained
by starting from the class of continuous functions in place of the
class of step funetions.

16. Differentiation of Functions of One Variable.—In the
remainder of this chapter we restrict attention to funections of
one variable and to the case when the measure of an interval
is its length. The proof given for Lebesguc’s theorem on the
existence of a derivative (Theorem 27) is due to Riesz [9]. An
especially simple proof is given of the fundamental theorem of
integral calculus for Lebesgue integrals (Theorem 29).

*For more general theorems on the differentiability of fune-
tions of one variable, the reader is referred to Hobson [3], Vol. I,
pages 391—404, and references there. Extensions of some of the
results of this section to functions of several variables may be
found in the standard treatises on Lebesgue integrals.  See, for
example, Saks [1], Chap. 4, and Hobson [3], Vol. I, pages 607-616.

Let f(x) be a single-real-valued function defined on the interval
I = [a, b], and let P be a partition of I by points «,, where
a=go <5<+ <tpg<ax,=0>b Let

(5:1) Ve(z) = z\f(xm) — J(x)l,

where the sum is taken over those intervals of the partitio? P
which are contained in the closed interval [a, x]. Let Va(x)
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denote the sum of those terms in (5:1) for which the increment
[f(z;+1) — f(z,)] is positive, and let V;'(z) denote the sum of
those terms in (5:1) for which the increment is negative. Let
t(z), p(x), n(z), denote the least upper bounds of V(z), Vi(),
V3 (z), respectively, for all partitions P. The functions ¢(z),
p(z), n(z), are called the total variation, positive variation, and
negative variation, respectively, of f(z) on the interval [a, z].
When #(b) is finite, the funclion f(x) is said to be of bounded
variation (or of limited variation) on [a, b].

TaroreM 23. The class of all functions of bounded vartation on
[a, b] is closed with respect to the operations I to V of Sec. 3.

TuEOREM 24. A function f(z) is of bounded variation on [a, b)
if and only if it is expressible as the difference of two nondecreasing
bounded functions. A function of bounded variation has one-side
limits at each point and has at most a denumerable infinity of;
discontinuities. The discontinuities of f(x) are the same as those
of i(z).

Proof —It is clear that p(x) and n(x) are nondecreasing and
that, when f(z) is of bounded variation,

, 7@ = f(@) + p(z) — n2),
5:2) i) = p(x) + (@),

since a sequence of partitions P, may be chosen such that we
have simultaneously for the corresponding sums,

lirkn Ve () = p(a), hin Vr, (@) = n(), lizn Ve (2) = t(x).

A nondecreasing bounded function is plainly of bounded varia-
tion, and the class of all functions of bounded variation is linear,
by Theorem 23. The existence of the one-sided limits of f(z)
follows from Theorem 2 of Chap. IV. For a finite number of
discontinuities ¢; of the nondccreasing function p(x), we have

Y In(e, + 0) = p(e, — O)] = p(b) — p(a).

Consequently, for each & only a finite number of “jumps”
[p(c, + 0) — p(c; — 0)] can be greater than 1/k, and thus it is
seen that the set of points of discontinuity must be either denum-
erable, finite, or null. To show that when f(z) is continuous
on the right at a point z,, ¢(z) is so also, select a partition P
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such that {(b) — Vr(b) <e. We may require the points z, and
z to be partition points, with £ > zo. Then 0 = #(z) — t(z0)
— |V2(z) — Ve(xo)| <e¢, and when z is sufficiently near z,
V(@) — Va(zo) = |f(z) — f(zo)] < ¢ 50 that &(z) — t(zs) < .

Let A denote the sum of the finite number of nonoverlapping
subintervals (a;, b;) of [a, b], and let

fl41 = ) [f®) — f(@))

The function f(z) is said to be absolutely continuous on [a, b]
in case
lim f[A] = 0.
m(A)=0
It is important to note that for an absolutely continuous function
f we have also
lim Y 17(b) = f(a)]| = 0.
m(4)=0 5

TarOREM 25. The class of all functions absolutely continuous
on [a, b] 1s closed with respect to the operations 1 to V of Sec. 3.

TaeoreM 26. If f(x) is absolutely continuous on [a, b}, then
f(x) s of bounded variation on [a, b).

1t is easy to construct examples of functions that are absolutely
continuous, and hence of bounded variation, on a finite interval
[a, b). The simplest of thesc is f(zx) = x. From Theorem 25
it follows that all polynomials in z are absolutely continuous.
If |f(@) — f(c)| = |g(d) — g(c)| for every subinterval (c, d), and
g(z) is absolutely continuous or of bounded variation, then f(x)
has the corresponding property. In the special case where g(z)
= Kz, f(r) satisfies a Lipschitz condition. By the Theorem
of the Mean for derivatives, if f(xr) has a derivative everywhere
which is bounded, then f(z) satisfies a Lipschitz condition.
Hence the function f(zx) = z?sin (1/z), with f(0) = 0, is abso-
lutely continuous. But the function fi(z) = z sin (1/z), with
71(0) = 0, is not of bounded variation on the interval [0, 1], as
may be shown by using the points £ = 2/(2n + 1)r as partition
points. An example is given following Theorem 29 of a func-
tion that is nondecreasing and continuous but not absolutely
continuous,
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The next lemma is due to Riesz [9].
LemMa 14. Let the function g(x) be bounded on [a, b], and set

G(z) = lim sup g(z').

Let E' (resp. E'") denote the set of all points x of the open interval
(a, b) such that there exists a point x, > z (resp. Ty < x) such that
g(xy) > G(x). If E' (resp. K'") is not null, it 18 an open set and,

if Z (ax, bx) s the representation of E' (resp. E'') as a sum of

disjoint open intervals, then g(x) = G(be) (resp. g(x) £ G(ar)) on
the interval (ax, bx), for every k.

Proof—It is easy to verify by an indirect proof that the
function G(z) is always upper semicontinuous, and from thiﬁ
property it follows at once that the set I’ is open. Then the
representation of £’ as a sum of disjoint open intervals is unique,’
as was indicated in Lemma 5. If z is a point of the open interval
(ak, bx), let z2 denote the least upper bound of the set of points
of the closed interval [r, b:] for which ¢g(z) < G(zo). Then on
account of the upper semicontinuity of G,

(5:3) g(x) = G(xy),

and, if z, = by, this is the desired result. But, if z, < by, by
the definition of the set I’ there exists a point z; > z, such that
(5:4) g(x1) > G(xq).

Then G(z,) > g(x), and z, > b, by definition of z,. Since by is
not in the set E’,

(5:5) g(x) < G(by),

and by combining (5:3), (5:4), and (5:5) we have the desired
result. The alternative reading is obtained by applying the
part already proved to g(—z).

The four principal derivates or derived numbers of a function
f(z) were defined in Chap. V, Sec. 1.

Lemma 15. The following relations between derivates hold for
an arbitrary function f:

(5:6) D*(—f) = =D.f, D (—f) = =D_f;
ify = —=z,g(x) = —f(y), then
(5:7) Dtg(x) = Df(y),  Dig(x) = D_f(y).



Suc. 5] DIFFERENTIATION 205

Proof—The relations (5:6) follow from the relation lu.b.

[-f@)] = —glb. f(x). The relations (5:7) follow from the
formula

gz + hz —9@) _ fly — h)h— @)

TreorEM 27. If f(x) is of bounded variation on [a, b] then f(x)
has a finite derivative almost everywhere on [a, b].

Proof —By Theorem 24 it is sufficient to consider the case
when f(z) is nondecreasing, so that each derivate Df is every-
where nonnegative. let E, denote the set including the dis-
continuities of f(x) and the end points a and b, so that E, is
denumerable and hence of measure zero. Let

Se = E[D*f >R, T,=E[D_f <1l

We shall show first that Se — E, is contained in a set E;, where
m(E,) approaches zero with 1/R, so that D*f is finite almost
everywhere. Then we shall show that, whenever 0 <7 < R,
SrT, — E,is contained in the product of a nonincreasing sequence
of sets E, whose measure tends to zero, so that m(SzT,) = 0.

Let g1(z) = f(x) — Rz, and let Gy(z) and i, = B = 2 (a3, b))
correspond to g;(x) as in Lemma 14. Then, since Gi(z) = gi(x)
except possibly on F, and since for each point x in Sk there
exists a point x; > x such that f(z:) — f(x) > R(x, — x), it
follows that

5:8) Sg — Eo C L.

Now since f(z) is nondecreasing, by Lemma 14 the set E; has the
property that g,(a; + 0) < ¢:(b, + 0), or

(5:9) R(b; — a;) £ f(b; + 0) — f(a; + 0).
From this it follows that
Rm(k,) £ f(b) — f(a).

Since by (5:8), E[D*f = =] C E¢+ K, for every R, it follows
that D+f is finite almost everywhere.

Now let gs(z) = f(z) — rx, and apply the alternative reading
of Lemma 14 to g. on each interval (a;, b;), obtaining a set E} =
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z(a,-k, by) such that g.(x) < G(ar) on the interval (am, bj).

*
We find then

(5:10) (b — ap) Z f(bix — 0) — flan + 0),
and
(5:11) ST, — Bo C By = ) (a, bu).

ik

Now apply the process by which (5:8) and (5:9) were obtained
to each interval (a;x, bj), noting that in this process f(bjy + O)
may be replaced by f(bx — 0). We thus obtain

(5:12) ST, — Ey C Es = z (@2, bina),

7kl
(5:13 R(bju — au) < f(bju + 0) — flau + 0),

where in (5:13), f(buw + 0) is to be replaced by f(bju — 0)
whenever b, = b

By alternating applications of the two processes we obtain a
nonincreasing sequence of open sets E, such that

(5:14) SeT, — By C En,
Em(Es) = z [f(bim + 0) — f(ajm + 0)]

2kl

< ) [ = 0) = f(au + 0)]
Ik

< rm(E,) < rm(Ey),

\

and in general
(5:15) m(Beny1) < (r/R)*m(E)).

If we now assume that 0 < r < R, we find from (5:14) and
(5:15) that m(SzT,) = 0. Since

E[D*f > D_f] = ) 8T,

where the sum is taken over rational values of # and R for which
0 < r < R, it follows that

(5:16) DY < D_f
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almost everywhere. From (5:7) and (5:16) it follows that
(5:17) D-f = D.f

almost everywhere. By combining (5:16) and (5:17) with the
obvious inequalities D_f £ D—f, D.f £ D*f, we obtain the
desired result that the four derivates are equal and finite almost
everywhere.

16. The Fundamental Theorem of Integral Calculus.—In
Theorems 28 and 29 below we find extensions of Theorem 10 of
Chap. VI which are made possible by the concepts of Lebesgue.
We shall need the following simple preliminary result:

LEMMA 16, If \ is an integrable function such that [ "Ndz =0
on [a, b, then N = 0 almost everywhere on [a, b].
Proof.—Let (a.) be a sequence of step functions converging

to \ almost everywhere, and satisfying the conditions of Theorem
6. Then for every k there exists an integer n;, such that

l[ ay, dz
A

for an arbitrary set A in A. Hence |a.,(z)] < (3)* except on a
set A with m(4x) < (3)%, so that lim a,, = 0 except on a set E
k

1

< 22k+1

contained in each of the sets C,, = z Ay Since m(C,) < ($),
k=p
it follows that m(E) = 0, and hence A = 0 almost everywhere.
THEoREM 28. If f(x) is absolutely continuous on [a, b] then
its derivative f'(x) s integrable on [a, b], and

[ 7 4o = 1@ - s@.

Norge: The validity of this and following theorems involving
derivatives is not affected by the fact that the derivative f'(x)
may fail to exist on a set of measure zero.

Proof—For xz > bsetf(z) = f(b) and forz < aset f(z) = f(a).
The function

X(.’IZ, h) = f(z + h})) - f(x)

is integrable for h # 0, sirce f(z) is continuous. For an arbi-



208 THE LEBESGUE INTEGRAL [Crap. X

trary set A = z (a;, b;) we have

L A, b) dz = }11 z [ / b: f(x) de — / h () d:c]
S [ e

1 h
=LY i+ @) flos + e
Since the intervals (a; + z, b; + z) are nonoverlapping and the
function f is absolutely continuous, it follows that the integrals
A Mz, h) dr are absolutely continuous uniformly in h. Also
lim Nz, h) = f'(z) almost everywhere, so that by Theorem 7)
h=0
f'(x) is integrable and '
b b
/ f'(z) dz = lim Nz, 1/n) dz
a a

n=

b+h b
= lim }L[ Nore f 1) d:r)]
1 ab*}}l a+h
= };if(l) 7 [ \ J(x) dx — [‘ J@) dz]
= f(b) — fa).

TaEOREM 29. If N is a funclion integrable on [a, b], there cxists
a function f such that (1) f is absolutely continuous on [a, b]; (ii)
the derivative f'(x) = Nx) almost everywhere on [a, bl. For every
Sunction [ satisfying conditions (i) and (ii) we have

[ xdz = 1) - 16@.

Proof —1f we set f(x) = L A dz, then f is absolutely continu-
ous by a remark following the proof of Theorem 6. By Theorem
28, /; ’ (f' = N dxr =0, so that f/ =\ almost everywhere by
Lemma 16. The last statement in the theorem also follows from
Theorem 28. -

It is now clear that, for functions of one variable, the Lebesgue
integral is characterized descriptively by the conditions (i) and
(ii) of Theorem 29. This descriptive approach to the integral
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follows the ideas of Newton, while the constructive approach of
Sec. 3 is related to the ideas of Leibnitz, Cauchy, and Riemann.
Certain relaxations of the conditions (i) and (ii) are possible,
leading to the integrals of Denjoy. (See Saks [1], Chaps. 7, 8.)
However, the condition (i) cannot be omitted entirely without
losing the uniqueness of the integral. In fact a nondecreasing
continuous function can be constructed whose derivative is zero
almost everywhere but which is not a constant.(? Let the
fundamental interval be [0, 1] and let z be represented in the
ternary system, while f(x) is represented in the binary system.
If the digit 1 first appears in a certain place in the representation
of z, let the corresponding digit of f(x) be 1 while all the following
digits are 0. For all other places, let a 0 in the representation of
z correspond to a O in the representation of f(z), and a 2 in the
representation of x correspond to a 1 in the representation of
f(x). It is casily scen that f(x) is continuous and nondecreasing,
that its derivative is zero on the complement of the Cantor set F
of Chap. III, and that the measure of ¥ is zero.

The need for some part of the condition (i) is also emphasized
by the existence of infinite families of functions such that all
the functions of a family have the same derivative, but no two
of them have a constant difference. Sec the remark following
Theorem 4 in Chap. V.

The next thcorem includes a formula for the total variation
of an absolutely continuous function of one variable,

TreoreEM 30. If f(x) is of bounded variation, its derivative
['(x) 7s Lebesgue-tntegrable, and its total variation t(x) satisfies the
inequality

6:1) i) = [ 17 @) de.

The equality stgn holds if and only if f is absolutely continuous.

Proof —Following the notations of Sec. 5, we have f(z) = f(a)
+ p(x) — n(2), tx) = p(z) + n(z), andso f' = p’ — ', ¢ = p’
+ n/, |f’| £ ¢ almost everywhere. Let

oz h) = Hr + h]),, — i(x)

where it is understood that the definition of #(x) is extended
1 8ce Bliss [10], p. 45.
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by constant values outside the interval [a, b], and let y(z, h, n)
= yY(z, h) An. Then }m; ¥(z, h, n) = t'(x) A n almost every-

where. Also y(z, h, n) is integrable with respect to z, and
bounded with respect to x and h, and

1
ﬁ We, hym) dz < / "l + B — 12)] do

1 [o+» a+h
=3 [/b t(z) dz — /; t(z) d:c:!;

and hence
[P 1t@ Anlde < 10) ~ t(a + 0).
Hence by Theorem 12, ¢/(z) is integrable, and
[’ ¢@) dz = 1v) — 1(a + 0).

It is clear that we may replace ¢(b) by t(b — 0). When ¢(b)
= /a ’ t'(z) dz, we have also t(x) = /; “y (x) dz, and hence t(x) is
absolutely continuous, and so are p(z), n(z), and f(z).

To prove that, when f is absolutely continuous, the equality

sign holds in (6:1), we note that there exist two nonnega-
tive integrable functions A, and N\; such that f/ = N\ — N,

I 'l = A+ No. Then the functions g,(z) = /a ? M dr and ga(z)

= j; “ N\ dz are nondecreasing, and by Theorem 28, f(z) = f(a)
~+ g1(z) — gz2(x). Hence in this case

(®) £ ) + g:(0) = [ If dz.

*The notion of the metric density of a set at a point is occa-
sionally useful. The result below on the metric density of a
measurable set in one-dimensional space is included here since
it is an immediate corollary of Theorem 29. More general
definitions and theorems, applicable in spaces of more dimensions,
are given in Saks [1], pages 128f., and in Hobson [3], Vol. 1,
pages 190f. B

*If E is a measurable set and z, is an arbitrary point in one-
dimensional space, and
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6:2 lim "E)

62 ntym0 M@

exists, where the interval ¢ is required to contain the point z,,:
then the value of (6:2) is called the metric density of E at x,.

*THEOREM 31. A measurable set E has metric density 1 almost
everywhere on E, and metric density 0 almost everywhere on cE.

Proof.—Since m(tE) = ﬁ ¢z dx, where ¢5 is the characteristic
function of E, and since

f(ﬁ) — f(e) = 1 [(xo _ a) f(xii : .i(a)

B—a B—a
JB) — f(zd)
+(B-—x0) ﬁ—x ]’

0

it is clear that the limit (6:2) exists and equals the derivative of

(6:3) [ gsdz

at all the points x, where (6:3) has a derivative and at no others.
So the theorem follows from Theorem 29.
*7. Rectifiable Curves.—A set of k continuous functions

(7:1) yi = yi(u), i=1 -, khasush,

constitutes a representation or parametrization of a continuous
path curve C in k-dimensional space. The variable u is called
the “parameter of the representation,” and the path C is said
to be traversed in the direction of increasing u. Such a repre-
sentation may have “intervals of constancy” [«’, w"] on which
all the functions y, are constant.

An admissible change of parameter is determined by a function

u = 6(v), csv=d,

such that (1) 6 is nondecreasing; (2) 8(c) = a, 6(d) = b; (3) every
discontinuity [#(v — 0), (v + 0)] is contained in an interval of
censtancy [«/, 4']. Such a change of parameter may eliminate
some intervals of constancy and introduce others. It is easily
seen that, if w = 6(v) is an admissible change of parameter for
the representation y;(u), then the inverse function v = 6-(u),
(properly defined) is an admissible change of parameter for the
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representation ;(6(v)). Two representations are said o be
equivalent if it is possible to pass from one to the other by an
admissible change of parameter. This equivalence relation is
transitive. Thus we may define a continuous path curve C as a
maximal class of equivalent representations in the form (7:1).

A partition P of the interval a £ u < b determines an inscribed
polygon w(P) formed by joining the points corresponding to
successive parameter values. The length L(x(P)) of such a
polygon is defined in the usual elementary way. The length
L(C) of the curve C is defined to be the least upper bound of
L(x(P)) for all partitions P. When L(C) is finite, the curve C
is sald to be rectifiable. The length of a curve is 0bv10usly
independent of the choice of the representation.

TaeoreM 32. A curve C s rectifiuble if and only if the funp-
tions y.(u) representing it are of bounded variation.

This follows from the incqualities

Y layl < L) £ ) Y layl,
- i P

which hold for each coordinate y.. Here 2 |Ay.| means z |y, (un)
P

n
— %.(Ua—1)|, where u, ranges over the partition points of P.
TrreorkM 33. For cvery continuous curve C,

L(C) = lim L(x(P)).
NP)=0

Proof —Let Py be a partition of [a, b] by points uy, . . ., u,,
and suppose that L(x(Py)) = Lo. Suppose that |y.(u) — y.(u)]
< € whenever |u — uj| < 8. Let P be a partition with norm
N(P) < 3§, and let the partition P* be formed by using the parti-
tion points of both Py and P. Then

Ly £ L(x(P*)) £ L(x(P)) + 2kge.

Since the curve C is continuous, the desired conclusion may
readily be obtained from this inequality, whether L(C) is finite
or infinite.

It is easily verified that a curve C is rectifiable if and only if
every subarc is rectifiable, and that the length of the whole is
the sum of the lengths of the parts. When C is rectifiable, the
length s(u) of the piece corresponding to the parameter interval
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[a, u] is a nondecreasing continuous function. Its inverse funec-
tion u = 0(s) satisfies the conditions for an admissible change of
parameter. Hence every rectifiable curve may be represented
with the arc length s as parameter. With this representation the
functions y;(s) satisfy a Lipschitz condition, and hence are
absolutely continuous.

THEOREM 34. For an arbitrary representation (7:1) of a
rectifiable curve C, we have

2 \2
(7:2) (:—ll?—'i) = 2 (%%) almost everywhere,
" du\? )
(7:3) L(C) z /; :Z(%)l du.

The equality sign holds in (7:3) if and only if the functions yi(u)
are absolutely continuous.
Proof—Since

(7:4) As = {z (Ay.)z}%,

it follows that

dy; 211
2T s

whenever all the derivatives involved exist. Let E denote the
set of all points » at which the strict inequality holds in (7:5),
and let E, denote the set of all points « in E such that

N I

whenever the interval Au contains u and has length less than 1/q.
Then E = 2 E,, and (7:2) will follow if we show that m(E,) = 0
for each g. Let e > 0, and let P be a partition with N(P) < 1/¢
and

(7:7) L(x(P)) > L(C) — e

If we multiply (7:6) by Au and sum over the intervals of P
containing points of E, and add to this the sum of (7:4) over the
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remaining intervals of P, we find that

(7:8) L(C) 2 Lx(P)) + ™Ed ’"(’“’

From (7:7) and (7:8) we obtain m(E,) < ¢g, and hence m(E,) = 0.

It follows readily from its definition that the function s(u) is
absolutely continuous if and only if all the functions y;(u) have
that property. Thus the remainder of the theorem follows at
once from Theorem 30.
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Saks (1] approaches the theory of Lebesgue integrals for real-valued
functions from an abstract point of view. A very useful bibliography
appears at the end. Lebesgue [7] gives some account of the ideas leading
up to the development of the theory.  The article by Bliss [10] gives a brief
presentation of the central ideas of this theory in very readable form.



CHAPTER XI
THE LEBESGUE INTEGRAL (Continued)®

1. Differentiation with Respect to a Parameter

tTHEOREM 1. Let Nz, t) be defined and integrable with respect
to x on the fundamental interval I for each t in a neighborhood of t,
and let the partial derivative N (x, to) exist almost everywhere on I.
Let the integrals

/ )‘(xy tO + h) — k(l‘, tO) dz
4 h

be absolutely continuous uniformly with respect to h. Then the
Junction

g(t) = /1 Nz, 1) dx

has a deriwative at t,, and
g (lo) = /I Nz, to) dz.

This theorem follows at once from Theorem 7 of Chap. X,
and holds for an interval I in any finitec number of dimensions.
It holds also for a general measure function with an added
hypothesis similar to the one following Theorem 7. We recall
that a sufficient condition for uniform absolute continuity is
given by Theorem 11 of Chap. X. In particular this condition
is always satisfied when the difference quotients [A(z, & + k)
— Mz, t5)]/h are uniformly bounded.

2. Fubini's Theorem on Reduction of Multiple to Repeated
Integrals.—In order to prove Fubini’s theorem (Theorem 2) on
the reduction of a multiple integral to repeated integrals, we
shall need some preliminary definitions and theorems. The first

1 We shall continue to indicate with a 1 those theorems which are not
known to hold in unrestricted form for a general measure function.
215
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of these is related to Lemma 16 of Chap. X, and in the one-
dimensional case is a corollary of it.
Lemma 1. Let N be a nonnegative integrable function such that

L)\ dx = 0. Then N = 0 almost everywhere.

Proof—Let E.=EN 2z 1/kl. Then [ \dz 2 m(E/k, so
that m(Ey) = 0. Since Ho= E]\ > 0] = ) B, it follows that

Let M+ denote the class of all functions which are limits of
bounded nondecreasing sequences of step functions, and let
IM+- denote the class of all functions that are limits of bounded
nonincreasing sequences of functions chosen from I+. Similarly
let M~ denote the class of all functions that are limits of bounded
nonincreasing sequences of step functions, and let M—+ denotk;
the class of all functions that are limits of bounded nondecreasing
sequences of functions chosen from M-, Here the term ‘“limit”
is used to mean convergence at each point of the interval I, not
merely convergence almost everywhere. It is easy to verify
that each of the four classes of functions just defined is closed
with respect to the operations I, IV, and V of Chap. X, Sec. 3.

Lmmma 2. Suppose N is bounded and measurable, and ¢ > 0.
Then there exist a function u* from the class M+ and a function u=
from M~ such that p= = N = pt and

/;ﬁdx—eé /deé /;rdx-l—e.
I I I

Proof.—1et (a.) be a bounded sequence of step functions con-
verging to A almost everywhere. Then by Theorems 2 and 4

of Chap. X, there exists a set C = Zih and an integer j such
that m(C) < ¢/4K, |a; — N\ < ¢/4m(I) on I — C, and

/a,dx— /)\d:z:
1 1

where K is a bound for |\ and |e,|. et

- — . € ‘-
@n = a; + '——_“4m(1) + 2K 2 Diry
h=1

pt = lim &,,
n

<£r
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where ¢;, is the characteristic function of the interval 5. Then

+dr = . £
-/;,u dx /;a,dx+4+2Km(C)

<‘/;)\dx+e.

The function u~ is obtained by taking the negative of the func-
tion from the class I+ corresponding to (—2).

Lemma 3. Let \ be bounded and measurable. Then there exist
a function u=t from the class M~ and a function pt= from P+
such that =+ £ X\ £ uyt and

/p‘*d:c= /kdzz= /;ﬁ“dx.
I I I

Conversely, if there exist functions = from I~ and ut= from P+
such that y=* = N £ ut and

fu‘+d$= /u’*"dx
I I

then \ is bounded and measurable.
Proof—By Lemma 2 there exist sequences (p}) and (u7) such
that uy £ X £yt and

1 1
/;M':dx";"é‘/;)\dx_éj;ﬂ:dx‘l';i‘

If u* is an arbitrary function of the class I+ such that N < ut,
we may replace uf by the logical product u* A u}. Hence we
may suppose that the sequence (¢}) is nonincreasing. Similarly
we may suppose that the sequence (u;) is nondecreasing. From
this, the desired conclusion is obvious. For the converse, we
note that by Lemma 1, p~+ = u*— almost everywhere, and hence
p~+ = \ almost everywhere.

Now let us suppose that the interval I is the Cartesian product
I, X I, of an interval I, of a y-space and an interval I, of a
z-space. Suppose also that a measure function m, is defined for
subintervals ¢, of I,, and a measure function m, is defined for sub-
intervals 4, of I,. For 7 = 4, X 7. we set m(z) = m,(3,)m.(i.).

Then it is clear that for a step function a(z) = a(y, 2), j;. adz
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is a step function defined on I,, and

ﬁadx = j;. j;.adzdy.

For convenience we shall say that an integrable function\(z)
= Ny, 2) has the property P in case:

P;. A(y, 2) is integrable on I, for every y in I;
P,. /I' Ay, 2) dz is integrable on I;

/I)\dx= fh /;'kdzdy.

In case P; holds only for almost all  in I, and P, and P; hold, we
shall say that N has the property P*.
TrEOREM 2. Fubini’'s theorem. Every integrable function h&{
the property P*. \
As part of the proof we shall use the following proposition:
LEmMaA 4. Let lim N, = X\ everywhere on the intcrval I, where

n

the functions \. and \ are integrable and the sequence (N,) is uni-
formly bounded. If each N, has the property P, the limit X also has
the property P.

Proof.—By use of Theorem 4 of Chap. X, the preservation
of the component properties P; to P can be verified in succession.

Proof of Theorem 2—We have already noticed that every step
function a has the property P. Consequently all the functions
in the classes M+ and M~ have the property P by Lemma 4.
Now let A be bounded and measurable. Then by Lemma 3
there exist functions u~+ from IM—+ and u* from N+ such that

PP
(2:1) ]Ivf.wdzdy-[xdx fi [ dzay.

Thus
L L == dzdy =0,

and hence by Lemma 1,
2:2) [ b, 2) = 5@, D) dz =0

almost everywhere in the interval I,. Let S denote the set
of points of I, at which (2:2) holds, Then by another applica-



8Eec. 2} FUBINI'S THEOREM 219

tion of Lemma 1 and use of (2:1) we find that for each y in the
set S,

Ky, 2) =Ny, 2) = ut(y, 2)
almost everywhere on I,. Thus \(y, 2) is integrable on I, and
f,, My, 2) dz = f, W (y, 2) dz

for each y in 8. Hence

Ji N, 2) de
is integrable on I,, and

fo firazdn = [, fudedy = fudo = [na,

so that \ has the property P*,

Since every integrable function is representable as the differ-
ence of two nonnegative integrable functions, it is sufficient in
completing the proof to suppose that \ is nonnegative. Then
A = M A n is bounded and measurable and so has the property
P*, and the sequence (A.) is nondecreasing. The sum of the
exceptional sets where

va(y) = /; My, 2) dz

may fail to have a meaning is a set £ of measure zero in the
interval I,, and so may be neglected. Now

[ @) dy = [ Mde

and the right-hand side tends to fz)‘ dz as n tends to infinity,

by Theorem 12 of Chap. X. Thus, again by Theorem 12,
¥(y) = lim ¥,(y) is integrable on I, and so is finite almost every-

n
where, and

/;, vdy = L \dzx.
By a third application of Theorem 12 we have

V) = [Ny ) de
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almost everywhere on I,, and so the function X\ has the property
P*

Tueorem 3. Let E be a measurable subset of the interval I,
and let Ev denote the set of all points z such that (y, z) is in E.
Then for almost all points y in 1, the set Ev is measurable in I, and

(2:3) m(E) = [I ma(Ev) dy.

This follows as a corollary of Theorem 2 by taking \ as the
characteristic function of the set E.

[t is interesting to note that the existence of the integral on
the right in (2:3) does not imply the measurability of the set E.
In fact, Sierpinski has given an example of a nonmeasurable set
in the plane which intersects an arbitrary straight line in &t
most two points.(? However, the following partial converse of
Theorem 2 is valid.

TueoreM 4. If Ny, 2) is measurable on I, and iniegrable on

1, for almost all y in I, and if fz Ny, 2)| dz is integrable on I,

then X\ is integrable on I.
The proof is similar to the last paragraph of the proof of
Theorem 2.
13. Integration by Parts
TurEOREM 5. Let f(x) be absolutely continuous and N(x) be inte-

grable on [a,b]. Letg(x) — g(a) = '/: Ndx. Then /ab fl@)\(z) dr

= J(b)g(b) = f()g(a) — [ 4’ @) da.

Proof —The product f(x)g(x) is absolutely continuous, by
Theorem 25 of Chap. X, and (fg)’ = f¢’ + f'g wherever both
derivatives f' and ¢’ exist and are finite. Moreover, the product
fg’, which equals fA almost everywhere by Theorem 29 of Chap.
X, is integrable by Theorem 8 of Chap. X, since f is continuous,
and so f'g is also integrable. Then the conclusion follows at
once from Theorem 28 of Chap. X.

The preceding theorem could also be obtained by applying
Fubini’s theorem to the integral

Jo 7' @N@) do dy,

1 “Sur un probléme concernant les ensembles measurables superficielle-
ment,” Fundamenta Mathematicae, Vol. 1 (1920), pp. 112-115.
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where D is the triangle Ela < y £ r £ b]. It must first be
proved that the product f'(y)\(x) is integrable over D.

t4. Change of Variables.—At first we consider functions of
one variable. Theorem 6 is a special case which is frequently
useful. It is also a steppingstone to the more general Theorem 7.

THEOREM 6. Let N(z) be bounded and measurableona < z < b,
and let the function E(t) be absolutely continuous on ¢ £t £ d,
and have all its values on the interval [a, b). Then the function
ME®))E () s integrable on [c, d), and

Jroy Mad dz = [*NEOE Q) de.

Proof—Let M = lLu.b. \2)|, F(z) = L’ Mdz, G(t) = F(£(1)).
Then the function G is absolutely continuous on [¢, d]. For, if
[ch, di] are nonoverlapping intervals in [¢, d] such that z |E(dn)
— £(en)| < ¢, we have

Y 16 — Glen| < MY |5(d) — &en)] S Me,

so that the absolute continuity of G follows from that of £®

Now let us consider the special case when \ is continuous.
Then the derivative F’(x) exists and equals \(z) everywhere,
and hence G'(t) exists and equals N(£(¢)) &' (¢) wherever £ (f) exists
and is finite. From this we find

[0\ d = Pl — F(&(e) = Gd) — G(o)
= ["Meanga a,

by Theorem 28 of Chap. X.

Next let us suppose that the conclusion holds for each function
. of a sequence such that |[\.(z)| £ K, and that \,(z) converges
to \(z) everywhere on [a, b]. Then lim N.(£(¢)) & (¢) = NEQW)E ()

almost everywhere on [c, d], and the sequence is dominated by
the integrable function K|¢'(f)]. Thus by Theorems 11 and 7 of
Chap. X, the conclusion holds also for the function \(z).

Now it is easily scen that every step function is the limit of a

11t is interesting to note that this conclusion could not be drawn if A were
only assumed to be integrable.  See Caratheodory [4], p. 554,
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bounded sequence of continuous functions. Thus the conclusion
holds when \(z) is a step function, and hence also when A\ is a
function of the class M~ or M+ of Sec. 2. By Lemmas 3 and 1,
for an arbitrary bounded measurable function \(z) there exist
functions x—+ in M+ and p+— in M+ which are equal almost
everywhere, such that

(4:1) p (@) £ Nz) £ pt(z) on [a, b],

£(7) £(7) &(7)
* = —+ 3 +—
4:2) ,[E © \dx j; o M dzx ko M dz.

But by what has already been proved,

&) T
(4:3) fg vt de = [ u a,

with a similar equation for u*t—, so that
/: “—-+Er dt = /cr ”4—51 di.

Hence py—¢ = pt¢' almost everywhere on [c, d], by Lemma 16
of Chap. X. By (4:1) A lies between p—+¢ and pt—¢ atevery
point on [¢, d] where & exists and is finite, so that N/ =u—+¢
almost ecverywhere on [¢, d]. This with (4:2) and (4:3) gives the
desired formula.

CoROLLARY. If the function x = £(t) is absolutely continuous
on the interval ¢ £ ¢t £ d, and transforms a set T of that interval
into a set X of measure zero in the interval a £ x £ b, then the
dertvative £'(t) = 0 almost everywhere on T.

Proof.—Let ¢(z) be the characteristic function of the set X.
Then

0= [ odz= [T a(c)FO d.

Hence, by Lemma 16 of Chap. X, ¢& = 0 almost everywhere
onc=t=d But¢=1fortin T, and hence ¢ = 0 almost
everywhere on T.

THEOREM 7. Let N(x) be integrable on a £ x < b, and let £(t)
be absolutely continuous on ¢ < t < d, and have all its values on
the interval [a, b]. Let N, denote the functior (N A n) V (—n).
Then 1{C))

L Jyo M@ dz = lim f,d M(E(0)E (0 dt;
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2. Whenever M(£(t)) £ (1) is integrable,

fioy Ma) dz = [ ME@)# @) d;

3. NEW®)E () 18 always integrable when £(f) is monotonic.
Proof.—By Theorem 6,

! f‘;” Mo dz = f I\t dt,

and by Theorems 11 and 7 of Chap. X,

. [HD @
lim / = / 3
M fio Mdz= [, Ndz

This proves the first conclusion. Next we have [\.&'| < |\¢|
wherever ¢ is defined; hence, if A¢’ is integrable on [c, d], we have

lim /c" Mot dt = /c“ \E' di.

To prove the third conclusion, we may suppose that £(f) is non-
decreasing and, since every integrable function is the difference
of two nonnegative integrable functions, that AM(z) = 0. Then
the sequence (A\.£) is nondecreasing, and hence \¢ is integrable
by Theorem 12 of Chap. X.

We note that if F(z) = L Y dz, then F(£(t)) 1s absolutely con-

tinuous whenever A(£(2)) £ (¢) is integrable.® Hence N(£(¢)) £ (1)
is not integrable in the following example (MecShane [2], page
214):

AMNz) =278, El) = Bcos® (x/t), F(z) = 32,
F(£(@)) = 3t cos (x/1).

The transformation of multiple integrals is a difficult subject,
and we shall not attempt to include the very general results
obtained by W. H. Young and by Radé and Reichelderfer.®

1 The converse also holds. See Caratheodory [4] pp. 562, 563.

28See Rad6 and Reichelderfer, “A Theory of Absolutely Continuous
Transformations in the Plane,” Transactions of the American Mathematical
Society, Vol. 49 (1941), pp. 258-307; also Helsel and Rad6, ‘“The Transforma-
tion of Double Integrals,” Transactions of the American Mathematical
Society, Vol. 54 (1943), pp. 83-102; and references in those memoirs.
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However, the results developed below are sufficient for many
purposes in analysis.
Consider a transformation

(4:4) T:z = f(u)

of aset Q into aset R = T(Q). For definiteness we assume that
Q and R are bounded open sets in k-dimensional space and that T
establishes a one-one bicontinuous correspondence between Q and
R. Upon occasion the variables may be divided notationally
into sets, and attention restricted to special transformations of
the form

o= filus, U0, ) =1, p;
4:5) T: ! J J , ) 05
( ) Yi =0 J=LL -, 0p+0o=kFk \\
We shall also wish to consider a real-valued nonnegative func-
tion J(u) (or J(u,r)) which is integrable on Q.
Lemma 5. Suppose that for every interval ¢ C R,

(4:6) m@) = fp, 7 du,

and that Z s a subsct of R of measure zero. Then J = 0 almost
everywhere on T—(Z).
Proof —1t is easily seen that 7T-1(7) is measurable. Let
(C,) be a nonincreasing sequence of open sets, with lim m(C,) = 0,
n

Z C C, CR, and let Qo = lim T-(C,). Then since each C,
is 4 sum of intervals,

Jo, 7 du = lim [ du = lim m(C,) = 0.

Hence J = 0 almost everywhere on @, which contains T-1(Z).

Leuma 6. Suppose that (1:6) holds for every interval © C R,
and that N(z) is integrable on R. Then Nf(u)lJ (u) s tnlegrable
on Q, and

@7 Jondz = /Qudu.

Proof.—~Suppose first that \ is bounded. -Let A be a finite
sum of intervals contained in R, and let (a,) be a bounded

sequence of step functions converging to N almost everywhere in
A. Then by Lemma 5, lim a,[f(u)}J(u) = Nf(u)}J(u) almost
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everywhere on T-1(4). Also |a.J| £ MJ, where M is a bound
for |aa(z)|. Immediately from (4:6) we have

[iands = [, o du.
Hence

[irde = [ M du.

The open set R = lim 4., where (4.,) is a nondecreasing sequence

of finite sums of intervals. 1f A is unbounded, we may assume

A= 0, and set \, = N where N\ £ n, \, = n where A > n. Then
Jo rde =Tim [, A, dz = lim Mo du = [ M du.
R " n Q

An T-1(An)

Lemma 7. Supposc that the transformation T is in the form
(4:5), and that for each interval . in the x-subspace and each y
Jor which (¢z, y) C R, we have

m,(iz) = ,/:Sv J (u) y) du;

where (S, v) = T-Y(3,, y), and m, 8 p-dimensional measure.
Then for every interval © C R,

m@) = [p I 0) dudo.

Proof —If ¢ is the Cartesian product of 7, and 7,, T-1(¢) is the
set of all (u,v) for whichvisin s, and wisin 8*. Then by Fubini’s
theorem,

/T-t(i) J(u, v) dudv = [,-, [g, J(u, y) du dy
= L ma(iz) dy = m(7).

LemMmA 8. Suppose that T is defined by functions of class C’,
that J is the Jacobian of the transformation, and that J > 0 on Q.
Then for every interval © C R,

(4:6) m(i) = /;'-1(:) J du.

Proof —The proof proceeds by induction on the number k
of dimensions. The conclusion obviously holds for k£ = 1.
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Suppose that it holds for £ and that the transformation 7 is
represented in the form

x =f(u’ Uy, * * ° 1”")’ ¥i = gi(u, V1, ° 1.076)
J=1---,k

If 7 is an interval contained in R, it is covered by a finite number
of subintervals such that, on the inverse image of each, some
partial derivative of f is not zero. Thus it is sufficient to verify
(4:6) on subintervals 7 on the inverse image of which some one
partial derivative of f is not zero. Hence we shall suppose
fu > 0 on T-%(35). (In casef. < 0, we may reverse the positive
direction on the wu-axis and on one v-axis.) Consider the
auxiliary transformation .
Ty:w = f(u, v), z =,
Then T, is of class C' and J, = f. > 0 on a neighborhood Q, of
T-'(in). Hence T7'is single-valued and of class ' on T:(Q,),
and so the second auxiliary transformation

Ty=TT: z=w, yi = h(w, 2),

is of class C’ and establishes a one-one correspondence between
T1(Qo) and a neighborhood R, of the interval 4, Its Jacobian
J2 = det (8h,/0z;) is positive and continunous, and J = JoJ1.
Then by the induction hypothesis, if (z, 7,) is in B,

myG) = [, Ja(z, 2) de,
where (w, 8¥) = I';'(x, ¢,), and so by Lemma 7, if 2 C 4,,
m(z) = /T,-x @ J2(w, 2) dz dw.
By Lemmas 7 and 6, applied to the transformation T;, we have

m(@) = [ Jededw= [, JoTidvdu= [ Jdvdu.

By combining LLemmas 8 and 6 we obtain the following result:
TrEOREM 8. Suppose the transformation T establishes a one-
one bicontinuous correspondence between the bounded open sets Q
and R, that T is defined by functions of class C’', and that the



Sec. 6} UNBOUNDED DOMAINS 227

Jacobian J of T 18 positive on Q. Then for every function N tnte-
grable on R,

L)\d:c= L)\Jdu.

It is clear that in special cases we may be able to apply Lemmas
7 and 6 when the transformation is not of class C'. As will be
indicated in Sec. 5, the result extends at once to unbounded
domains. The Jacobian J may be permitted to vanish at certain
exceptional points, and the restriction that the transformation
be one-to-one may also be lightened slightly. These possibilities
are sufficiently indicated by the familiar example of transforma-
tion to polar coordinates:

8
i

T U COS v, 0su=sl,

" y=usinv, —rSv T
In this case the boundary of the rectangle @ in the uv-plane
transforms into a closed set of measure zero and, when these
sets are discarded, the hypotheses of the theorem are satisfied
on the remainder.

*5. Integrals over Unbounded Domains.—It was remarked in
Chap. X that the Cauchy improper integral of elementary
calculus is not included as a special case of the Lebesgue integral,
since the absolute value of an integrable function is also inte-
grable. We shall make the same restriction in considering
integrals over unbounded sets.

Let X denote the interval (—, =), and let I, = [—gq, ¢l.
In the case of space of more than one dimension, corresponding
inequalities would be assumed for each coordinate, with the
same value of ¢. A function g is said to be measurable on X in
case u is measurable on each interval I,. A function \ is said
to be integrable on X in case \ is integrable on each I, and the

integrals /1. I\ dz are bounded. Then we define

,/x Ndz = alin: 5 \dz,
since the limit surely exists and is finite. The definition of
measurable sets is extended to unbounded sets in the same way.
The measure of an unbounded set may be finite or infinite.
When a family of functions \.(z) is given, we shall say that the
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integrals L I\+| dz converge uniformly when

lizn /;,, [\ dz = [Y Aol de

uniformly. The definitions of functions of bounded variation
and of absolutely continuous functions extend without change
to the case of functions f(x) defined on unbounded domains.
The following theorems of the preceding sections are still
valid when the domain of integration is the whole space X in
place of a finite interval I: Theorems 8 to 13, 15, 18 to 20,
22 to 24, and 30, and the Corollary of Theorem 17, in Chap. X};
Theorems 2, 4, and 8 in Chap. XI. In Theorem 11 of Chap. )&

we obtain the additional conclusion that the integrals /x IA\4] d. \
converge uniformly. In Chap. X, Theorem 7 is still valid with}
the additional hypothesis that the integrals j; IN\a| dz converge

uniformly; Theorem 25 is still valid with the additional hypothe-
sis, in the case of a product, that the faclors are bounded; and
Theorems 28 and 29 are still valid with the additional restriction
that the function f(x) is of bounded vartation. In Chap. XI,
Theorem 1 is still valid with an additional hypothesis correspond-
ing to that just mentioned for Theorem 7; Theorem 3 is valid
except that the formula (2:3) may fail to have a meaning;
Theorem 5 is still valid under the additional assumption that
f(z) is of bounded variation; and the conclusions (2) and (3)
of Theorem 7 are still valid when \(x) s tntegrable on (— «, =)
and either (a) £(t) s absolutely continuous on every finite interval,
or (b) £(t) ©s absolutely continuous on every interval [c + ¢, d — €]
and £(c) = — =, E(d) = . In Chap. X, Theorems 16 and 17
are still valid for subsets of a fixed set E of finite measure, which
may be unbounded. The left-hand inequality in Theorem 16
holds without this restriction, as follows from Theorem 12.
Theorem 26 does not extend, since the function f(z) = z is
absolutely continuous but is not of bounded variation on the
whole z-axis. However, a function f(z) is absolutely continuous
if it is of bounded variation and is absolutély continuous on
each I,

The proofs of these extensions will be indicated for Theorems 7,
9, and 17. For Theorem 7, we have
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li:n _/;. Ao dz = A [A\a] dz uniformly with respect to n,
Iiin /I, o dz = /I' |u| dz for each q.

Hence by Theorem 2 of Chap. VII,

lim [Y | dz = lim L lul dzx = fX || de.

The hypotheses required by Theorem 2 still apply when the
absolute valuc signs are dropped, so lim ¢ Mdz = /X udx.

Also lim [‘, I\ — u|dz =0, and since ‘ L, e — ) dx‘ <

fx [Na — u| dz, the convergence is uniform for measurable sets E.

For Theorem 9, let (anq) be a double sequence of step functions
such that lim a., = X\ almost everywhere on I, an, = 0 outside

n
I,, and lim /1 lang — M dz = 0. From this double sequence

we may select a simple sequence (a,) such that &, = 0 outside
I, /1 lag — N dz < 1/29, and |&, — N < 1/2¢ on I, — C,,
where m(C,) < 1/22. Then it is easily verified that lim &, = A
almost everywhere and lim [vz &g — N dz = 0.

For Theorem 17, since m(E) < o, there is an interval I,
such that m(E — I,) < ¢/2. There is a set C; in € containing
E — I,, with m(C;) < €/2, since this is so for the part of £ — I,
contained in each I,,. Thereis also a set C;in € and a set A in U
such that m(C:) < ¢/2, and A — Co C EI, C A + C,. Then
we may take C = C, + C,.

1The extension of the notion of measure to unbounded sets
makes it possible to regard the integral of a nonnegative inte-
grable function of k variables as the (¢ + 1)-dimensional measure
of the set of ordinates.

tTHEOREM 9. Suppose that u(z) is a nonnegative measurable
function defined on the space X. Let E(u) denote the set of all
points (x, y) with 0 < y < u(x). Then E(u) s measurable and,

if u ts integrable, m(E(p)) = /x pdz.

Proof.—Let G be a bounded measurable set in X, and let ¢
be its characteristic function. Then there is a sequence of step
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functions a.(z), each of which takes only the values zero and one,
such that

lim a.(z) = ¢¢(z) almost everywhere.

Then
lim ¢r,) = dre almost everywhere,

Also m(E(an)) = [an(x) dz, and hence E(¢¢) is measurable and
m(E(¢¢)) = [¢edz = m(GF). From this we see that the con-
clusions of the theorem hold when u is a function that takes a
positive constant value on each of a finite number of bounded
measurable sets and is zero elsewhere. Since every u satisfyin,
the hypothesis is the limit of 2 nondecreasing sequence of such
functions, the desired result follows.

*16. Invariance of Lebesgue Integrals and Lebesgue Measure
of Sets under Motion.—1It is easily seen that in the case of the
Lebesgue measure, the measurability of a set and its measure are
invariant under a translation of axes. Every rotation of axes
can be obtained from a succession of rotations in each of which
all axes but two remain fixed. Let ¢ be an open interval in the
coordinate system X'/ obtained from the coordinate system X’
by rotating only two axes. Then ¢ is a sum of intervals in X’,
by Lemma 5 of Chap. X. Since every interval in X"’ is a product
of a sequence of open intervals in X", it follows readily that
every set which is Borel-measurable in X’/ is Borel-measurable
in X’, and conversely. Moreover, the measure in the system X’
of an interval ¢ in X'’ can be calculated by means of Theorem 3
and an evaluation of three elementary integrals and is thus found
to equal the product of the edges of <. Hence every open set
has the same measure in the two systems, and so has every closed
set. Thus by the Corollary of Theorem 17 of Chap. X, every set
that is measurable in one system is measurable in the other and
has the same measure. By starting from functions that are
step functions in one system it is easily seen that a funection that
is integrable in one system is also integrable in the other and
has the same integral. This result extends at once to integrals
over unbounded sets.

7. Mean Value Theorems.—The first theorem is a generaliza-
tion of Theorem 18 at the end of Chap. VI.
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TreoreEM 10. First Theorem of the Mean. Lel A(x) be
integrable, and N(z) Z 0 (or M(z) < 0) almost everywhere on the

measurable set E, and let u(x) be measurable and essentially bounded
on E. Suppose

(7:1) L £ u(z) £ U almost everywhere on E.
Then
@) Jorwdz = M Jordz,

where L M s U;

(ii) In case E is a one-dimensional interval (a, b) (where a
or b or both may be infinite) and u(z) vs equal to the derivative of a
continuous function at cvery point of (a, b), then M = u(z,), where
a < zo <b.

Proof —Part (i) follows immediately from Theorem 8 of
Chap. X. To obtain part (ii), we note first that, if A\ = 0 almost
everywhere on (a, b), then M may be chosen arbitrarily and so
may the point zo. Since the sum of a sequence of sets of measure
zero is also of measure zero, it is easily scen that the least upper
bound of the numbers L effective in (7:1) is also effective, and
likewise for the greatest lower bound of the numbers U. For the
remainder of the proof we suppose that L is the greatest possible
and U the least possible. If A(x) > 0 on a subset E, of (a, b)
with m(E,) > 0 and if u(x) > L on a subset E, of E, with m(E5)
> 0, then M > L by Lemma 1 in Sec. 2. Likewise, if u(x) < U
on a subset E; of E, with m(E;) > 0, then M < U. Thus, if
M = L, we have u(x) = M at almost every point of E, and, if
M = U, we have u(x) = M at almost every point of Ey, and E,
is a subset of the open interval (a,d). Butif L < M < U, there
is a point z, with a < z, < b where u(zs) = M, by Theorem 5 of
Chap. V.

*1THEOREM 11. Second Theorem of the Mean. Let A(z) be
integrable and u(x) be bounded and nondecreasing on the interval
(a, b) where a or b or both may be infinite. Let L = p(a + 0),
U 2 u(d — 0). Then there is a point xo with a £ 2o < b, such
that

Lb)\pdx =L[:°hd:c+ U/::)\dx.

Proof—We shall suppose that the interval (a, b) is bounded,
since the conclusion extends at once to the unbounded case by a
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simple argument. In case the conclusion is valid for a particular
set u, L, and U, it is also true for theset p + ¢, L + ¢, U + ¢,
where ¢ is any constant. Hence it is sufficient to consider the
case when U = 0. We first take up the case when the graph
of the function u(z) is a polygon, with u(a) = L, u(b) = U = 0.
Then u(z) is absolutely continuous. If we set g(z) = /; “ ) dz,

we may apply the formula for integration by parts (Theorem 5)
to obtain

Lb)\pdx= - ngy’d:c.

By the First Theorem of the Mean, the right-hand side is equal to
b o
~g(x) [ dr = glagu(a) = L [\ dz. \

In the general case when p(z) is any bounded nondecreasing
function, let the interval (a, b) be divided into n + 1 equal parts
by points i, Z2, . . . , &a, and let the graph of p.(z) be the
simple polygon with vertices (a, L), (1, m(z1), . . ., (@,
u(z,)), (b, 0). Then lim p.(x) = p(r) almost everywhere, since
it is easily verified that the only possible exceptional points are
the discontinuities of w(z), which form a denumerable set.
Since the sequence (u.) is uniformly bounded, we have

) b b
h;n [l My dz = fa M dz,

by Theorems 11 and 7 of Chap. X. But, by the part of the
theorem already proved,

b on
[ Mwdz =1 [ N da.
a a
Since L * X dz is a continuous function of the upper limit we have

L”de =1 ["ndz

for each point of accumulation x, of the sequence (%on).

8. The Inequalities of Schwarz, Holder, and Minkowski.—We
have used the symbol £ to denote the class of all integrable
functions. The symbol &, is frequently used to denote the class
of all measurable functions X for which |\|” is integrable, where
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p is a positive number. These symbols are used with reference
to a fixed measurable set E as the domain of integration. For
convenience the symbol E is omitted in the formulas that
follow. The proofs are made by means of the following ele-
mentary inequality :(

LEmMMA 9. If U and V are nonnegative, and 0 < ¢ < 1, then

UVi—e < U + (1 — oV,

and equality holds only for U = V.

Proof.—Let f(1) =t — e +e—1. Then f(1) =f(1) =0,
F@) >0for0<t<1, () <0fort>1,and so f(t) <0 for
all t = 0 except ¢t = 1. Now the lemma obviously holds when
V=0 IfV 0 wemaysett= U/V, and so we have

U U\* U

Upon multiplying by V and transposing, we obtain the inequality
that was to be proved.

TuroreEM 12. Holder’'s inequality. Suppose that p > 0,
qg>0,and p+ q=pq. Let \ be a function in &,, and let u e
in Qe Then Ny is in §, and

[ dx| £ (JINP dx)ve(f|u|e dx)t/e.

Proof —In case cither A or g is zero almost everywhere, the
conclusion is obvious. In all other cases we may set

- Mo _ u@)
MO = pa @ = e
Then
®:1) SNl do = fludedz = 1.

In the lemma, take ¢ =1/p, U = |\|?, V = |us|e. Then
1 —¢e¢=1/q, and

|7 g
(8:2) o 5 B I
Now the product \u; is measurable, by Theorem 5 of Chap. X,
and so is integrable, by Theorem 10 of the same chapter, and

! See F. Riesz, “Su alcune disuguaglianze,” Bolletino dell’ Unione Mate-
matica Italiana, 1928, p. 77.
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from (8:2) and (8:1) it follows that

l/)\lm dz

The inequality of the theorem follows at once.

We note that equality holds if and only if |\|? bears a constant
ratio to |u|¢ almost everywhere and the product Mu has the same
sign almost everywhere on the set where it is not zero.

The inequality of Schwarz is the speclal case of Holder’s
inequality for which p = ¢ = 2.

Tueorem 13. Minkowski’s inequality. Let M and p be func-
tions in R, where p = 1. Then N\ + p is in &, and

U+ dz)» < (JINP dz)> + (flul dz)v>. \

\

Proof —The case p = 1 follows from Theorem 8 of Chap. X.|
In the remainder of the proof we may suppose p > 1, and
AN20, u=0, since [N+ u| = [N\ + |u]. By the theorem just
referred to, the function M V u? is integrable, and since

(A4 W) S 2200V w7 = 2200 V w),

the function A 4+ p is in ®,. Thus (A 4+ w)”! is in &,, where
g = p/(p — 1), and so by Theorem 12, the functions A\(A + p)*!
and p(A 4+ p)” ! arc in §, and

SO+ w7 de = INX 4+ w7t de + [u(h + p)7tdz
S [N dz)ve + (fur dx)V?)(J(N + w)? dz)>—v7/»,

Division by the factor outside the square bracket yields the
desired result.

Minkowski’s inequality is also called the triangle inequality.
When p = 1, a necessary and sufficient condition for equality
to hold is that \u = 0 almost everywhere. When p > 1, the
condition is that N bears a constant nonnegative ratio to u
almost everywhere.

CoroLLARY. If the n functions \; are in R, and

1,1
S-+4+-=1
P+q

[Mpdz<e G=1,-+,n)
then B

n ?

dz < nPe.

/

j=1
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*9. A Criterion for Uniform Absolute Continuity.(V—
The following necessary and sufficient condition is useful in
applications:

Taeorem 14. Let Mo be a class of functions u, measurable on
the set E* of finite measure. Then a necessary and sufficient
condition that the functions u are integrable on E* and the integrals
fu dx are absolutely continuous uniformly and bounded uniformly
on My 18 that there exist a constant H and a function ®(t) such that

1. 1) 2 0for0 S ¢ < o

2. lim EE—Q = o]
t= o

3. For every p in Mo, ®(|u(z)|) is integrable on E* and
jE, &(|u(z)]) dz < I.

Proof—To prove the sufficiency, let E be a measurable subset
of E*, and let e > 0. By (2), there is a value ¢, such that &(t) =
2Ht/€ for ¢ = i, Let E, = E[lul < tl], E, = E[|y| = t1]. On
Es, |u(z)] < e®(lu(z)])/2H, so that p is integrable and

[EM dr £ tyim(Ey) + ﬁ% /-E' ®(lu)) dz < tym(E,) +_e2_

In proving the necessity of the condition we shall show that
the function ® may be taken to be continuous and nondecreasing.
Let K be chosen so that ﬁg* luldz < K. Let En = E*[n < |y

w

< n+1]. Then 2 nm(E.,) < K, and hence for each integer g,

n=0

9:1) Z m(En) < I_q§

n=q

By hypothesis there is a sequence of positive numbers §, such
that

1
(9:2) /E lul do < 55
whenever m(E) < §. Let (g;) be an increasing sequence of
integers such that ¢;5; > K. Then by (9:1) and (9:2)

18ee C. J. de la Vallée Poussin, “Sur U'intégrale de Lebesgue,” Trans-
actions of American Mathematical Society, Vol. 16 (1915), pp. 451, 452,
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giv1—1

. 1
(9:3) mem<y
n=q

Now set
(1) =q1for0 =t < qy

3 -1 [ t— 0 ]
=({2 1 4 3 =
(2> togm gyl T =< g

Then with the help of (9:3) we find that

©  gj1—1

/.. 2 do = z [ 3l dx+2 > f #(ul) s

j=1 nnq

< gm(E*) + z L gm(E®) + 1)
i=1 .

10. Modes of Convergence.—In this section we shall discuss
the properties of and the relations between several modes of
convergence. Let ¢ (x, y) be a function which is real-valued for
z in a set £ and for y in a set 7', let b be a point of accumulation
of T, and let g(z) be real-valued on E. We shall consider the
limit
(10:1) lim y(, 9) = 9(s)

in the following modes:

Uniformly on E;

. On E, or everywhere on E (ordinary convergence);
. Almost uniformly on ¥;

. Almost everywhere on I,

In measure on £,

. In the mean of order p on E.

HEHY QW

Uniform convergence has been discussed in Chap. VII, and
ordinary convergence in Chaps. IV and VII. Modes C and D
were introduced in Chap. X for the case when x ranges over the
interval I and y ranges over the positive integers, but the defini-
tions are unchanged in form for the more general casec of (10:1).
Convergence in measure is a notion introduced by F. Riesz and
is sometimes called approximate convergence. If we set

Ey = E[ly(z, y) — g(@)| > ¢,
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then lin; ¥ (z, ¥) = g(x) in measure on E in case
y=
lin; me(Eye) = 0 for every e > 0.
y=

Here we may agree that the points z where ¥(z, y) and g(z)
are infinite of the same sign are not included in E,., but that
other points where either ¢(z, y) or g(z) is infinite shall be so
included.

Finally, we say that lin}' ¥(z, y) = g(z) in the mean of order
y=

p on E in case
im [, Wiz, ¥) — 9@l dz = 0.
y=>b

Here it is understood that E is measurable and |[¢(z, y) — g(z)|
is integrable on E. We note that by Theorem 13 this will be so
whenever p = 1 and both ¢(z, y) and g(x) are in the space &,
on E.'V When the term “convergence in the mean” is used
without qualification, it is sometimes understood to mean
“convergence in the mean of order two” or ‘“convergence in
the mean of order one.”

We can properly use the term convergence only when the limit
g(x) is everywhere finite in modes A and B, and almost every-
where finite in the remaining modes. But the use of the symbol
(10:1) is subject to those restrictions only in modes A and C.
We note, however, that even for modes E and F, we have g(x)
finite almost everywhere when ¢/(z, y) is finite almost everywhere
for every value of y. The definitions for modes C and E are
sometimes phrased so as to remove such restrictions, as well as
the need for the hypothesis that g(x) is finite almost everywhere
in Theorems 17 to 19 below.® But we are interested principally
in the case when g(x) is integrable.

THEOREM 15. If lin}’ v(x, y) = g:1(x) and li?;t Y(x, y) = ga(x)

y= y=

in mode C, D, E, or F, then g:(z) = g2(z) almost everywhere.
Proof —For mode E, let E. = E[|g, — g2| > 2¢], Eye = E[ly

- g;l > 6], Eye = E[llﬁ - g2| > ¢]. Then E. C Eye + Eqy. for

every y. Hence m.(E.) < m.(Ewye) + m(Exe), and from this
1 For a discussion of convergence in the mean of positive order less than

one, see G. C. Evans, The Logarithmic Potential, 1927, pp. 139-144.
2 See McShane [2], pp. 163, 164.
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the desired conclusion is readily obtained. For mode F, we
apply Theorem 13 in Sec. 8 and Lemma 1 in Sec. 2.
TaEOREM 16. If lin}, ¥(z, y) = g(x) in any one of the siz
y-

modes, then for every sequence (y,) tn T with lim y, = b, we have

Ne= o
lim ¢(z, y») = g(z) in the same mode. Conversely, if for every
sequence (Ya) tn T with lim y, = b, lim Y(z, y.) exists in mode

ne o nm= o

A, B, E, or F, then hm Y(z, y) erists in the same mode. The

converse does not hold for modes C and D.
Proof —If we set
By) = Lu.b. [¢(z, y) — g(z)| for z on E, \

\

then hm ¥(x, y) = g(z) uniformly on E is equivalent to lmg ﬂ(y)
y=

= 0. Then it is clear that the first part of the theorem follows
from Theorem 13 of Chap. IV. TFor the converse, we note
first that from two sequcnces (y1.) and (yz.) we may form a
new sequence (y,) by taking terms alternately from the given
sequences. Then by the first part of the theorem, a limit func-
tion for the sequence (y.) will be one also for (yi.) and (¥zn).
By Theorem 15, a limit function for (y:,) will be one for (y2.).
Hence we may apply Theorem 13 of Chap. IV.

The following example shows that the converse is not true for
modes C and D. Let E be the interval 0 £z =1, and let T
be the interval 0 < y = 1. Let

1 z

= 0 for all other points (z, y).

=12 ...,

Then lim sup ¥(z, 3) = 1, hm 1nf ¥(z, y) = 0, but for each y,

y=0

¥(z, y) = 0 almost everywhere

The following relations between the various modes of conver-
gence are easily verified: A implies B and C; B implies D; C
implies D and E. That C implies DD was proved in Theorem 1
of Chap. X for the case of sequences, and the same proof is
valid in the general case. Mode D implies C under special
conditions, as is shown in the next theorem, which is a generaliza-
tion of Theorem 2 of Chap. X.
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TrEOREM 17, Egoroff’s theorem. Suppose that each func-
tion ua(x) s measurable on the measurable set E of finite measure,
that g(x) is finite almost everywhere on E, and that lim p.(z) = g(z)

almost everywhere on E. Then im p.(z) = g(z) almost uniformly

on E.

Proof.—Let En. = E[|ua(x) — g(z)| > €], where we shall include
in E,. all the points where g(z) is infinite. Let

Spe= ) B, ﬁs,c = 8.

n2p p=1

Then m(S,) = 0, and hence lim m(S,) = 0 by Theorem 16 of

pﬂ L]
Chap. X. If we set e, = 1/k, then for each k there is an integer
i such that m(S,,.) < 1/2t. We have m(E,) < 1/2¢1, where

and thus by the Corollary of Theorem 17 of Chap. X, there exists
a set C, in €, including E,, with m(C,) < 1/2¢°1. Then, if z
isnotin C'y, we have |u.(z) — g(z)| £ 1/kforn = px, or lim p.(z)

= g(x) uniformly on E — C,.

TreOREM 18. Supposc that E is a mcasurable sel of finite
measure, that y(x, y) is measurable on E for each y in T, that g(x)
is finite almost everywhere, and that lin: Y(z, y) = g(x) almost

y=

everywhere on E. Then lim y(z, y) = g(z) in measure on E.
y=b

Proof.—By Theorem 16 it is sufficient to prove the result
for sequences, but for this case it follows from Theorem 17 and
a previously noted relation.

TreoreM 19.  Suppose that g(z) is finite almost everywhere and
that lim y(z, y) = g(z) in measure on E. Then there exists

y=b

a sequence (yi) of distinct points in the range T of y, such that
lim g, = b, and lim y(z, yx) = g(z) almost uniformly on E.
k= o

k= »

Proof—By Theorem 16, it is sufficient to consider the case
of a sequence (Ya(z)). Let E,. = E[lyn(z) — g(z)| > €, where
it is understood for convenience in the following that the points
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where g(z) is infinite are included in E,, and let e = 1/k. Since
lim m.(E.) = 0 for every ¢ > 0, for each k¥ we may choose

ne > Ne-1 such that m.(EB,..) < 1/2¢. By definition of exterior
measure, there exists an open set Gy O E.,,. such that m(Gy)

< 1/2k, 1f we set E, = z Gy, then m(E,) < 1/2"1 and, on
k=p

E — E,, |yn(zx) — g(z)| < 1/k for k = p, so that the sequence

(¥»,) is the required one.

It is easy to construct a sequence of functions y.(x) converging
in measure to zero, but such that the sequence converges in the
ordinary sense at no value of z. TFor each positive integer k, let
the fundamental interval I be divided in any manner intp
k measurable subsets Exi, . . . , Ew of equal measure. Arrangeé
the sets E); in any manner as a simple sequence S,, and let ¢,,\,
be the characteristic function of S,. Then lim m(S,) = 0, but
lim sup ¢.(x) = 1, lim inf ¢, (z) = 0 for every z.

TrEOREM 20. If E is measurable, y(x, y) is measurable on E
for each value of y, and lin} Vv(z, y) = g(x) in any one of the modes

y=

A to E, then g(x) s measurable on E. In the case of mode E, we
assume also that g(x) is fintte almost everywhere.

Proof.—This follows readily from the preceding theorems and
the Corollary of Theorem 4, Chap. X.

tTrEOREM 21. Suppose that the set E is measurable, and
that the function (x, y) 1s in the class &, on E for cach y in T, where
p 2 1. Suppose that the integrals [|Y(x, y)|? dx are absolutely
continuous uniformly with respect to y, and converge uniformly with
respect to y in case E has infinite measure. Suppose finally that

(10:1) l,,ifi ¥(z, y) = g(z)

in any one of the five modes A, B, C, D, or E. Then g(z) is in
L, and (10:1) holds in mode F.

Proof—It is sufficient to prove the result for the case of
sequences (Y.()), by Theorem 16. For the modes A, C, and E
it foliows from the definitions and the fact that the functions
¥x(z) must be finite almost everywhere that the limit g(z) must
be finite almost everywhere. Thus in any case there is a subse-
quence, for which we use the same notation (¥.(x)), such that
lim y4(2) = g(z) in mode D, and lim |y.|* = |¢|” in mode D. By
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Theorem 20, g(z) is measurable. Then by Theorem 7 of Chap. X,
g(z) is in ¥, and by Theorem 13 of Sec. 8, the functions (¢, — ¢)
are in ¥,. From the inequality |¢. — g|» < 27[|ya]” + |g|7] it
follows that the integrals |y, — g|? dz are absolutely continuous
uniformly and converge uniformly. Hence

(10:2) lim /E n — glPdz =0

by Theorem 7 of Chap. X. If a subsequence was chosen, it
follows easily that (10:2) holds on the original sequence.

*For the case of a general measure function, with convergence
in mode B or D, it is necessary to add an assumption ensuring
that g(z) is finite almost everywhere. See the remark following
Theorem 6 in Chap. X.

When the functions ¢ and g in the preceding discussion depend
also on a parameter o, it is sometimes desirable to know that the
integrals converge uniformly with respect to ¢. For the case of
convergence in mode I we have the following result:

TuroreM 22. Suppose that E s measurable and that ¥(x, y, o)
is wn L, on E for cach y and o, where p = 1. Suppose that the
integrals [|y(x, y, 0)|? dx are absolutely continuous uniformly with
respect to y and o, and converge uniformly with respect to y and o in
case E has infinite measure. Suppose finally that lin; Y(z, v, o)

v=

= g(x, o) uniformly with respect to o, except for x in a fized subset
E, of E of measure zero. Then the integrals [|g(z, o)|? dz are
absolutely continuous uniformly with respect lo o and converge
uniformly with respect to o, and

lim [, 146z, 9, 0) = 9@, @) dz = 0

uniformly with respect to o.
Proof.—Since

Ulo(@, o)l da]» < Ulg(e, o) = ¥z, v, o)|P da] ¥»
+ [J.W'(x, v, a)]p dz]ve

by Theorem 13, the first part of the conclusion follows from

Theorem 21. If the last part is false, there exist a positive
number ¢ and sequences (y,) and (¢.) such that lim y, = b, and
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L (=, Yn, ou) — g(z, oa)|?dz > . If we set Yu(z) = Y(z, Yn,
oa) — g(z, 0a), we have lim y,(z) = 0 except on E,, and the

n
remaining hypothesis of Theorem 21 for the functions ¥, is
verified with the help of the Corollary of Theorem 13, so that we
are led to a contradiction.
TuEOREM 23. If

(10:1) },‘fi ¥(z, y) = g(x)

tn the mean of order p on E, then (10:1) holds also in measure on E.
Proof —If we let

Eye = EllY(z, y) — g(2)| > ¢,

then E,. is measurable and

Jo W@ ) — g)lrdz > em(B,).

The conclusion follows at once from this inequality.
The next theorem in combination with the preceding forms a
partial converse of Theorem 21. Its proof is immediate.
THEOREM 24. If lim y.(x) = g(x) in the mean of order p on

n= ©
E, then the integrals [|y. — g|? dz are absolutely continuous uni-
formly and converge uniformly with respect to n. When g(x) s in
L,, the integrals [|.|? dz also have these properties.

THEOREM 25. Let 0 < s < ¢, and let (10:1) hold in the mean
of order q on E, where E i3 a set of finite measure. Then (10:1)
holds also in the mean of order s on E.

Proof.—By Theorem 16, it is sufficient to consider the case of a
sequence (¥a(z)). Let ua(z) = |¢n(z) — g(z)|. Then lim p.(z)

n= o
= 0 in measure on E, by Theorem 23. Also p;, = 1 4+ p, s0
that ug is integrable, and

[, vz < m(B) + [, wida

for every measurable subset E; of E. With the help of Theorem
24 it follows that the integrals [u; dz are absolutely continuous

uniformly with respect to », and then lim /E usdz = 0 by

Theorem 21 for p = 1.
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The Cauchy condition for convergence in mode A was given
in Theorem 1 of Chap. VII, and for mode B in Theorem 10 of
Chap. IV. The corresponding condition for modes C, D, E, and
F is stated in the following theorem:

TureorEM 26. Suppose that ¥(z, y) ts finite almost everywhere
on E for each y in T. Then a necessary and sufficient condition
that there exists a function g(z), finite almost everywhere on E, such
that lir;)z ¥(z, y) = g(x) in mode C, D, E, or F, s that

v=

(10:3) Lim [¢(z, y1) — ¥(z, y2)| = 0

y1=b
Y2=b

in the corresponding mode. For mode ¥ we suppose that p = 1
and that Y(z, y) 1s tn L, for each y in T, and then g(x) is necessarily
also in L.

Proof—For mode C, the proof is based on Theorem 1 of
Chap. VII, and the nccessity of the condition is then obvious.
Also if

lim ]‘I’(x’ Y1) — \l’(xy yz)l =0

yni=b
y2=b

uniformly on E — C,, then the limit g(x) is determined and finite
except on C,. We may suppose m(C,) < 1/27, and so g(x) is
determined except on the set Z = [] €., and m(2) = G.

For mode D, the condition follows from Theorem 10 of Chap.
Iv.

To prove the necessity of the condition for mode E, we note
that

Elly(z, y1) — ¥(z, y2)| > 2¢] C El¥(z, y1) — glx)| > €
+ Elly(z, y2) — g(x)| > ¢,

so that, if the exterior measure of each of the last two sets is
less than p, the exterior measure of the first is less than 2p. In
proving the sufficiency of the condition for mode E, we may first
prove by familiar methods that

lim |¥(z, yn) — ¥(z, )] =0

n= o
k=

in mode E for every sequence (y,) with lim y, = b. Hence by
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Theorem 16 we may restrict attention to the case of a sequence
(¥n(x)). For each j, there is an integer n; such that the set
E[lYn — %] > 1/27] has exterior measure less than 1/2/ whenever
n 2 n;, k2 n;. We may also suppose n; > n;—;. For each j
there is an open set G; D El[|¢n;,, — ¥u,| > 1/2] such that

m@) < 1/%. Let Ci= ) G. Then for 1> 2 k, [¥n(2)
i=k

— Y (z)] £ 1/21 except on Ci, so that by the Cauchy condition

for mode C, there exists a function g(z) such that hm ¥, (Z)

= g(z) almost uniformly on E. Moreover, |¢,.,(x) - g(z)l
< 1/2-! except on C,, so that for n = n;,

'

(@) ~ 4@)] £ o) = ¥ (@) + W @) ~ 0@)] S 555 |

except on a set whose exterior measure is less than 1/2/-2,

For mode F, the necessity of the condition follows readily
from the Corollary of Theorem 13. To prove the sufficiency, we
note that by Theorem 23, (10:3) holds in mode E, and hence
by the part of the theorem already proved, there is a function
g(x) such that linr; Y(x, y) = g(r) in measure. Then by Theorem

ym

19 of the present chapter and Theorem 1 of Chap. X, there is a
sequence (y¥.) with lim y, = b, such that lim y(z, y.) = g(x)

almost everywhere. Let ¢,.(x) = ¢(x, y.). Then for each value
of k,

lim |¢n — |7 = |g — ¥x|? almost everywhere.

Nne= ©

We next proceed to show that for each value of k, the integrals
f1¥n — ¥il? dz are absolutely continuous uniformly and converge
uniformly with respect ton. For every e > 0, there is an integer
ko such that if n > ko, then

(10:4) L, n — Vi l? dz < .

Also there exists a number § > 0 such that if » < ko, and m(E,)
< &, then

(10:5) Jo Wo = wilrdz <,
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since there are only a finite number of integrals in this set when
k is fixed. By applying the Corollary of Theorem 13 to (10:5)
with n = ko and (10:4) with E replaced by E, we find that, for
n > ko and m(E,) < §,

Jo, Wn = Wil dz < 22,

The uniform convergence of the integrals is proved in a similar
way. Then by Theorem 7 of Chap. X,

lim [ Vo — Wil dz = [ lg — yule d,
and by Theorem 3 of Chap. V11,
lim /;, lg — walrdz = 0.
Since by Theorem 13,

[ @) —g@Prde]” s [ [ b ) — w@irde|
+{ [ @ — g@ir dz]*

we are led to the desired result.

The next theorem outlines sufficient conditions that the limit
operator in the various modes be distributive with respect to the
operations I to V of Chap. X, Sec. 3.

TureorEM 27. Suppose that g:(z) and go(x) are finite almost
everywhere on E, and that

lim ¢i(z, ) = g:(x),  lim ¥u(z, ) = g2(2),
y=b y=b
on E in any one of the six modes A to ¥. Then
1. linf: W1+ ¥2) = g1 + go,
ym=
1I. lim ay: = ag, for every finite constant a,
ye=b
Iv. hm 1V ) =gV gy
V. hm @1 A ¥s) = g1 A g

in the same mode, provided that g, and gs are everywhere ﬁm'te.in
case of mode A, that g, and g, are nowhere infinite of opposile sign
1n case of mode B. and that we set 0 - © = 0. We have also
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III. hm Vive = gifs,

m modw A to E provided that g, and g are bounded in case of
mode A, that the form 0 -  does not occur in case of mode B, and
that the set E has finite measure in case of modes C and E, and
further that g1 and g are measurable in case of mode E. In case
P+ q=1pgp>049>0, ¢iand giarein Ly, ¥2 and g: are in L,
lim Y1 = g1 ¢n the mean of order p and lim Y3 = g in the mean of
order q, then 111 holds in the mean of order 1.

Proof—We shall indicate the proof for IIT in mode E. The
proofs in the other cases are readily constructed. Let p > 0.
Then there is an integer » such that

m(Ellg:| > n]) < p, m(Ellge| > n]) <p, \

by Theorem 16 of Chap. X. Thenif 0 < ¢ < 1, thereis aneigh-:
borhood N (b; 8) such that for y in N(b; 9),

"nﬂ'(E[}‘l’l(Ty y) - gl(“’)l > G]) <p,

with a corresponding relation for ¢» and g;. From these rela-
tions it follows that for y in N(b; 9),

[¥1(x, ¥) Yo(z, ) — g1(x)g2(x)| = (2n + 1)e

except on a set whose exterior measure is less than 5p.

In Chap. VII, Sec. 4, the space €, composed of all continuous
functions f(z) defined on a fixed bounded closed set K, was dis-
cussed and was seen to be a complete normed linear space, with
IIfll = Lu.b. |f(z)| on E. The results of the preceding paragraphs
indicate that we may use each of the modes of convergence A to F
to define points of accumulation in a space consisting of a suitable
class of functions. For p = 1, we may set

N = [[IN(z)|” dx]ve

for each N in ,. We meet here with the difficulty that [|A]] = 0
does not imply AMz) = 0. However, if we agree that two func-
tions are equivalent when they are equal almost everywhere, we
find with the help of Theorems 13 and 26 that the space of all
equivalence classes composed of functions A in £, is a complete
normed linear space. It is convenient to denote this space by
the same symbol &,, and to denote the equivalence class to
which a function X\ belongs by the same symbol \.
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The modes of convergence B, C, D, and E do not correspond
to normed linear spaces. We may define a norm [|y||, such that
lim ¢, = ¢ in measure if and only if lim ||y, — ¢|| = 0, asfollows:

= g.Lb. of all e such that m.(E[|l¢(z)| > €]) < e.

But this norm does not have the property that |jay| = |a| - ||¢]|.
Since it does have the property that ||y:1 + vl < |[¥a]] + [I¢ell,
we see that the space of equivalence classes of functions is a
metric space with the distance between ; and ¥, defined to be
V1 = ¥of|.©

*We conclude this section with the following theorem, which
may be regarded as showing that the operation of translation in
the space &, is continuous:

*{THEOREM 28. If N(z) 18 1n R, where p = 1, then

lim jX Nz + ) — A@)|" dz = 0.

Proof —By Theorem 13 it is sufficient to consider the case
when X = 0. By Theorem 9 of Chap. X, there is a sequence

(an) of step functions such that lim /Y lan — Nl dz = 0. It is

clear that we may require that o, = 0, and then we may set
B2 = a,. Since |, — \|? = |B2 — N?|, we have

lim fx 18, — |7 dz = 0.

For fixed n, lim |B.(x + t) — B.(z)| = 0 almost everywhere and,
=0

since B, is bounded and equal to zero outside a sufficiently
large interval, we have

lim / |Bn(z + £) — Ba(x)|Pdz = 0.
t=0 JX

By another application of Theorem 13 we are led to the desired
result.

We note that Theorem 28 holds true for functions of several
variables, but not for a general measure function.

*11. Orthonormal Systems in the Space £;.—Let E be a fixed
measurable set of positive measure, and let (A.) be a sequence of

t 8ee Fréchet, Les espaces abstraits, pp. 91, 92, where a slightly different
distance is defined.
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functions in @, on the set E. The linear extension (\,), of (\,)
consists of all finite linear combinations of functions chosen from
the sequence. The linear closed extension (M\,).c consists
of all functions that are limits in the mean of order two of
sequences chosen from (A.)r. As usual we do not distinguish
between functions that are equal almost everywhere on E.

The system (A.) is said to be orthonormal on E in case
IAuha dT = 8pn, Where 8, = 1, 8ms = Oform % n. All integrals
are understood to be taken over the set E. A familiar example
of an orthonormal system is the set of trigonometric functions,

1 cos nT sin nz
11:1) A = — Aea(z) = Aen— = —
( ) O(x) '\/_2;', 2 (.T) v;r ) 2 l(x) ‘\/ﬂ—. :’

1

when the set E is an interval of length 2. {

THEOREM 29. For every sequence (Y») tn L2, there is an ortho--

normal sequence (\,) (which may be finite) which has the same linear
extension.

Proof —Let ||¢|| = [[¢? dz]*, and let p, denote the first ¢, with
l¥all % 0. Let Xo = po/|lwoll. If No, - -+, A, have been
determined, let ¢ be the next unused function of the sequence
(¥m). Let

g
== ) N, m= [ ¥ndn
ji=0
Then fuh\idz =0 for j =0, - -+, q. If |jml 0, set Aes
= we/||mell.  If||uel] = O, discard i and try Yiq1.
A sequence (\,) is said to be complete in £, in case the only
functions ¢ in £, for which

11:2) [)\,.\ﬁd:c =0 =012 "9,

are equal to zero almost everywhere. A sequence (\,) is said to
be closed in f; in case the linear closed extension of (A,) is the
whole of £,.
THEOREM 30. The sequence (11:1) s complete in L,.
Proof—We shall show that (11:1) is complete in the class
¢ on the interval I = [0, 2x]. This is a larger class than %,
since the interval I is finite. If ¢ is in  and satisfies (11:2) with

the functions (11:1), let f(z) = ﬁ, ¢dz. Thenf(0) = f(2r) = 0
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and, by integrating by parts in (11:2), we find

2%

b Mfdz=0 (=12 "-"").

If L&rf dz = 2Zme, then [,2' (f —¢)dz = 0. Thus (11:2) holds

with ¢ replaced by g = f — ¢. If g(z) # 0, suppose for definite-
ness that g(z,) = 2¢ > 0, where 0 < zo < 2r. Since ¢ is con-
tinuous, there is an interval I, = [z, — 8, 2o + 8] C I such that
g(@) > eonl, Let

tr) =1 4 cos (x — o) — cos 6.

Then ¢(x) > 1 on the interior of I,, but [¢(x)| < 1 on the interior
of I — I,. Now by (11:2) with ¢ in place of ¢,
(11:3) 0= ﬁ)‘h gindz = [Io gi* dz + [ L dz.

But the first integral on the right in (11:3) approaches infinity,

and the second integral approaches zero, which leads to a contra-

diction. Hence g(z) = 0, and so ¥(z) = 0 almost everywhere.
TreoreEM 31. Bessel’s inequality. Let

(11:4) an = f‘l#X" dz (n=0,1,2, - ),

where (\,) ts an orthonormal system and ¥ is an arbitrary function
in Q. Then

D dis [vrds = vl

n=0

Proof.—We have

q

s o0s [(v- Y ar)dar=vi- Y a

n=0 n=0

TuroreMm 32. If (\,) ¢s an orthonormal system, then for fixed ¢

and g, the expression
f ('I' - }9: a,)\,.)z dz

n=0

18 @ minimum when the coefficients a. are gien by (11:4) for
n=201---,q
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TrEOREM 33. Let (\,) be an orthonormal system and let the
series z a converge. Then there is a function ¥ in R such that

lim i Auhg = ¥

qe= x n-o

in the mean of order 2.

Proof.—Since
J (3 anyas= 3 o
n=p

n=p

the desired result follows from the Cauchy condition for the
convergence of the series zaﬁ and the Cauchy condition fon

convergence in the mean (Theorem 26).
TreEOREM 34. If (\,) ts an orthonormal system and

¥

(11:6) lim ) ad. =y

Q= ® ﬂ=0

in the mean of order 2, then the coefficients a, are given by (11:4) and

(11:7) Y at= vl

0

Proof.—From the Schwarz inequality (Theorem 12) we find
that

(11:8) lim [y (i anhe = ¥) dz = 0

g=x n=0

for every function ¥/ in ¥.. Then the first part of the theorem

is obtained by taking ¥/ = \.. The equation (11:7) follows at

once from (11:6) and the right-hand equality in (11:5).
TueorEM 35. The Riesz-Fischer theorem. If (\,) is an

orthonormal system and the serics 2 a’ converges,-there is a function

¥ in & satisfying the equation (11:4). The function y is uniquely
determined (apart from sels of measure zero) if and only if the
system (\.) is complete.
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TareorEM 36. Parseval’s theorem. If (A.) s a complete
orthonormal system, ¥ and ' are functions in L., and

0, = [z, o, = [ W\ da,
then

«©

i a, = |yl z andt, = fW’ dz.
n=0 -

Parseval’s theorem follows at once from Theorems 31, 33 to 35,
and equation (11:8).

TuroreEM 37. A necessary and sufficient condition that a
sequence (\,) be closed in L2 is that ot be complete in L.

Proof —By Theorem 29 we may suppose the system (\,) is
orthonormal. Then the necessity of the condition follows from
Theorems 32 and 34, and the sufficiency from Theorems 31, 33,
and 35.

It is obvious that a sequence (M\.) is closed in &, in case it is
known that its linear closed extension contains a set everywhere
dense in 2, as for example the set of all step functions or the set
of all continuous functions. Ilowever, there exist orthonormal
systems (\,) of continuous functions which are nol complete in
¥, but are such that the only continuous function ¢ satisfying
(11:2) is identically zero. An example may be constructed as
follows. Let (v,) be an orthonormal system of continuous
functions which is complete in £, Let ¢ be a function in ¥,
which is not equivalent to a continuous function. Not all the
coefficients

cn = [om, dr

arc zero, and we suppose for convenience of notation that
co # 0. Then let N, = cony1 — Cuy1mo, and suppose

(11:9) JYhadz =0 (n=0,1,2, ).
From this it follows that the coefficients
b, = [ymndsx

are proportional to the coefficients ¢, of the function ¢. Then
by Theorem 35, ¥ is proportional to ¢. Conversely, (11:9) holds
when ¢ is proportional to ¢. But then ¥ cannot be continuous
unless it vanishes identically.
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*112. Additional Theorems on Differentiation.—The next
theorem on interchange of order of limit and derivative bears
little resemblance to Theorem 8 of Chap. VII.

TrEOREM 38. Suppose that the functions f.(z) and f(z) are of
bounded variation on [a, bl, and that im {(fn, — f) =0. Then

n= o

lim f) = f’ in measure on [a, b].

ne= o

Proof —By Theorem 30 of Chap. X, Sec. 6,
b
=Nz [ |- fld.

Then the conclusion follows from Theorem 23 of See. 10.
COROLLARY. Let the functions gi(x) be nondecreasing on [a, b],

and let the series z[gk(b) — gi(a)] converge. Then f(z) %

z lgx(x) — gr(a)] converges uniformly on (a, b] and f'(x) = z gh(z)
almost everywhere on |a, b].

This follows with the help of Theorem 19 and the fact that
g.(x) 2 0 almost everywhere. The corollary has an immediate
extension to the case where thefunctions g (z) are only of bounded

variation, and the series z t(gr) converges.
Let f(z, ¥) be an integrable function of two variables, which
we may suppose to be defined throughout the zy-plane, and let

(12:1) Fa,g) = [ [} 16 m) dn de.

Then it may be shown that

h=0 hk
k=0

almost everywhere, provided either (a) the function |f] log* |f]
is integrable, where log* |f| = log [|f| V 1]; or (b) the limit is
taken over sequences (h,), (k,) on which the ratios h,/k, and
ka/h, are bounded. For the proof, see Saks [1], Chap. 4, espe-
cially pages 106, 118, 132-133, 147-149. A related but inde-
pendent result is the following:

TueoreMm 39. If f(z, y) ts integrable and F(z, y) is given by
(12:1), then there exists the partial derivative

(12:2) Fuz, y) = ﬁ," J(z, m) dn

= f(z,y)
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except for x in a set G which has linear measure zero and is inde-
pendent of y, and there exists the mized partial derivative F.,(x, y)
= f(z, y) almost everywhere.

Proof.—By Theorem 29 of Chap. X, we sec that the first part
of the conclusion holds when y is restricted to be rational. For
the remainder of this paragraph it is convenient to suppose
fz, ¥) 2 0. We may then show that the exceptional set @
effective for rational y’s is effective for irrational »’s as well.
For, an irrational y lies between two rational values y; and y,
having the same sign as y and then, since f(x, y) preserves its
sign, each partial derivate D.F(z, y) lies between

Fioy) = ["f@mdn  and  Fule,y0) = [ 1z, n) dn

for x not in G. But ﬁ:’ f(z, m) dy is a continuous function of y

for z not in @, and hence there exists F.(z, y) = /:’ Sz, ) dn.

By another application of Theorem 29 of Chap. X, we see that
there exists Fo(z, ¥) = f(z, y) unless zisin @, or y is in a set H,
whose linear measure is zero. Then by Theorem 3 it follows
that the exceptional set, where F, does not exist or is not equal
to f, has planar measure zero if it is measurable. Thus to
complete the proof it is sufficient to show that each of the four
Dini derivates D,F, is measurable, where the set @ is neglected.
The expression

z+k y+h
M(z, y; h, k) E/ / J(& n) dn di
x v

is continuous in (z, y) for each h and k, and so is measurable.
Fxcept for z in G,

M = 1 v i M(x7 Y5 hy k)'
Q(z, y; h) = 7 L f(z, n) dn = I{E%—-—“—h‘k"-——;

and so Q(z, ¥; h) is measurable for b ¢ 0. For each z not in G,
Q is continuous in A, and so

B(z, y; 8) = Lub. Qz, y; h)
0<h<s

Lu.b. Q(z, y; r) for rational r.
0<Lr<é

I
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Then by Lemma 13 and Theorem 21 of Chap. X, Sec. 4, 8(z, y;5)
is measurable, and finally lim B(z, y; &), which is the upper
&=0

righthand derivate of F.(x, y), is also measurable. The meas-
urability of the other three derivates follows with the help of
Lemma 15 of Chap. X, Sec. 5.

*113. Integral Means.—In Sec. 11 we considered briefly the
approximation of functions in £; by linear combinations of
functions from an orthonormal system. In Chap. VII, Sec. 4,
we considered the approximation of continuous functions by
polynomials. In this section we shall develop a few clementary
properties of the approximation to functions in €, or in C™ by
integral means. At first we restrict attention to functions of one
variable. \

Let X denote the r-axis, let ¥ be a measurable subset of X
and let A(x) be a measurable function which is integrable on
every bounded subset of E.  For convenicnce we define N(x) = 0
on the complement of E. Then we may define the integral mean

xth

1 [* 1
(13:1) M(x) = 37 /_h Az + 8) ds = 35 L_h A(s) ds
for all h > 0 and for all values of . It has the following proper-
ties:

M1. lim N\, = X almost everywhere, and in particular at
h=0

all the points where N is continuous.

M2. M\ is absolutely continuous on each finite interval, and

(13:2) N(z) = MEA R QIT):,(T;_’Q

almost everywhere, and in particular at the points z such
that A is continuous at (z + h) and at (r — »). Hence,
if \ is continuous everywhere, N\, is of class C’.

M3. If Aisin &, (p = 1), s0 is .

M4. On every finite interval the integrals [\, dz are abso-
lutely continuous uniformly for 0 < A-< 1.

M5. If X is in &,, the integrals [|\i|? dr are absolutely con-
tinuous uniformly and converge uniformly for0 < h <1,

and lim Az = N in the mean of order p.
h=0
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MB6. If \ is continuous at the points of a bounded closed set

E,, then lim N\, = X uniformly on E,.
h=0

M7. If N\ is continuous on a neighborhood of z, and has a
derivative at z,, then

lim N (zo) = N'(z).
h=0

M8. If \ is absolutely continuous on cach finite interval,
)‘;; = (N
M9. If Nis of class C™, and its nth derivative A is absolutely
continuous on every finite interval, then AV =
()\‘”+D)h-
M10. If N is of class C™, then M, is of class C™+V; if E; is a
bounded set, lhmz) MY = A" uniformly on E,.

It should be noted that, since M (xo) depends only on the values
of M) for 20 — h <z < 9 + h, even the properties M8, M9,
and M10 could be restated as local properties.

M1 follows from Theorem 29 of Chap. X and Theorem 9 of
Chap. VI. The absolute continuity of A, follows from the
relation

M) — M(@) = o [ f :h N(s) ds — ] b—: A(s) ds]

and the fact that [\ ds is absolutely continuous on every finite
interval. The validity of (13:2) follows from Theorem 29 of
Chap. X, and the remainder of M2 from more elementary
considerations.

To prove M3 we show first that AM(x + s) as a function of two
variables is in £, on XS, where S is the interval [—h, h]. For
any set E in X, we shall let E* denote the set of all points (z, s)
such that x + sisin E. 'Then, if E is closed, E* is closed relative
to XS and, if E is open, E* is open relative to X8. Thus if ¢
is an interval, 7* is measurable and, if ¢ denotes the character-
istic function,

m@*) = [ gwdzds = [, [ 6:(c + o) duds = 2bm(e).

From this it is easy to see that, if E has measure zero, then
E* has measure zero. If a(z) is a step function, a(r 4+ s) is
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measurable and, if lim a.(zx) = A(z) almost everywhere on X,

lim a.(z + 8) = Nz + s) almost everywhere on XS, and thus

Az + s) is measurable on XS. Obviously jx Az + 9)|rdzx is
independent of s, and so by Theorem 4 of Sec. 2, N(z + s) isin
2, on X8. By Fubini’s theorem, [jh IA(z + s)|? ds is integrable
on X, and since by Hélder’s inequality,

A
/ ANz + s) ds
—h

M isin 8, on X. !
To prove M4, we have, with the help of Fubini’s theorem,

A dx " Az + s) dr ds
/; Mz + s) dx

The first part of M5 is verified in a similar way with the help of
(13:3), and then the last part follows from M1 and Theorem 21.
M6 is proved easily by use of the uniform continuity of A\ on E,.
M7 follows from M2. MS follows from M2 and Theorem 28 of
Chap. X. M9 follows at once from M8 by induction, and M10
follows from M9, M2, and M6.

It is easily seen that each time we repeat the process of taking
integral means, we obtain an approximating function having
an additional derivative, so that taking integral means is a
smoothing process. For functions of two variables, we may take
integral means over rectangles, squares, circles, or some other
configuration. In two-dimensional potential theory, it is con-
venient to take integral means over circles, since a harmonic
function is characterized by the property that it is everywhere
equal to its integral mean over circles. In studying the differ-
entiability properties of integral means, it is simpler to use
squares, and we shall restrict attention to that case. Possible
extensions to functions of more than two variables will be
apparent. Some additional properties for functions of two
variables are listed in a paper by Helsel and Rad6.(®

1 “The Transformation of Double Integrals,” Transactions of the American
Mathematical Society, Vol. 54 (1943), especially pp. 87-95.

(13:3)

P hk
= (2h)P? / . Nz + 8)| ? ds,

L
2h

=< Lu.b.

lel <1

BN e
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The increment A(\; 2) of a function A(z, ¥) of two variables
over an interval ¢ = (a, ¢; b, d) is defined by the formuls

(13:4) A(N; 1) = Nb, d) — NMa, d) — (b, ¢) + A a, ©).
Here it is not essential to specify whether an interval is open or

closed. A set A will be understood to be a finite sum Zz of

intervals ¢ which are nonoverlapping but not necessarily dis-
joint. The notation A(\; A) will be used for the sum of A(X; 1)
over the intervals ¢ making up A. A set A has infinitely many
representations as a sum of nonoverlapping intervals, but it is
readily seen that they all give the same value for A(\; A). A
function N(z, y) is said to be absolutely continuous in case

(lir)n . A(\; A) = 0. If f(z, y) is an integrable function and
m ]

F(z, y) is defined by formula (12:1), then it follows from Theorem
7 of Chap. X that F(z, y) is absolutely continuous. In other
words, the definitions of absolute continuity for the set function

L f(z, y) dy dx and the point function F(z, y) correspond.

It should be noted, however, that the correspondence set up
by (13:4) between point functions N (z, y) and interval functions
is not one-to-one, since an arbitrary function of x and an arbi-
trary function of ¥ may be added to X without changing the values
of AQA;7). Thus a function A(z, y) may be absolutely continuous
according to our definition, and yet be discontinuous. Caratheo-
dory ([4], page 653) in defining absolute continuity for functions
of two variables adds the requirement that \(z, y) be absolutely
continuous in y for one fixed value zo of z, and absolutely con-
tinuous in z for one fixed value y, of y. Then N is absolutely
continuous in y uniformly with respect to z, and in z uniformly
with respect to y, on each finite interval.

A related but different concept for functions of more than one
variable is frequently useful. A function \(z, y) of two variables
is said to be absolutely continuous in the sense of Tonelli in
case it is continuous, and absolutely continuous as a function of z
for almost every y, absolutely continuous as a function of y for
almost every z, and the partial derivatives \, and )\, are inte-
grable. Like the preceding one, this definition may be applied
either to a finite interval or to the whole plane.

As in the case of functions of one variable, we may suppose
that the functions A(z, y) to be considered are defined in the
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whole zy-plane, which will be denoted by R, and integrable over
every finite interval. The mean M is defined by the formula

o[k
Mz, y) = 74}7 / / Mz + s,y + O) dtds,

z-+h
4h: f (s, &) dt ds.

It has the following properties:

M11. Same as M1.

Mi12. X, is absolutely continuous, and also absolutely con-
tinuous in the sense of Tonelli, on each finite interval,
and .

a)\h 1 vih

except for 7 in a set ¢ of measure zero, and

(13:6) 5%’(;; - 4,0 Nz + hy + h) — Nz + hy — B)

almost everywhere. If N is continuous, then N; is of
class ¢’ and has a continuous mixed derivative, and
formulas (13:5) and (13:6) hold everywhere.

M13. Same as M3.

M14. Same as M4.

M15. Same as M5.

M16. Same as M6.

M17. If X is absolutely continuous in the sense of Tonelli on
each finite interval, then

A) _on (2] _on
or)n oz’ oy~ oy

M18. If Nis of class C™, then M\, is of class C**V | and on each
bounded set E;, the partial derivatives of A, up to and
including those of order n converge uniformly to the
corresponding partial derivatives of A.

The proof of M11 is like that of M1, except that it depends on
the theorem quoted just preceding Theorem 39 in Sec. 12.  For
M12, we obtain each type of absolute continuity by a manipula-
tion similar to that for functions of one variable. Formulas
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(13:5) and (13:6) follow from Theorem 39. The proofs of the
remaining properties also parallel those for functions of one
variable.

ExErcises

1. Show that if (E,) is a nondecreasing sequence of sets, then
me(lim £,) = lim m.(F,).

2. Show that Theorem 16 of Chap. X holds true for unbounded
sets F,, provided they are all contained in a set £ of finite
measure. Give an example to show that the right-hand ine-

quality may fail when Z FE, has infinite measure.

3. If ¢ is an additive function defined on the class & of measur-
able sets E, prove that g is absolutely continuous if and only if
g(E) = 0 whenever m(E) = 0.

4. Construct a function f(x) which is properly increasing and
absolutely continuous and has f'(x) = 0 on a set of positive meas-
ure. Prove that the inverse of a function with these propertics
cannot be absolutely continuous.

5. Show that Az, y) = (x — y)/(x + »)* is not Lebesgue-
integrableon 0 £ x £ 1,0 £ y £ 1, by computing the repeated
integrals in the two orders.

6. Iixhibit a sequence of functions complete in €, but not in €,
where 1 £ p < ¢ £ .
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CHAPTER XII
THE STIELTJES INTEGRAL

1. Definitions and First Properties.—Stieltjes defined the
integral known by his name for a special case in a paper published
in 1894.(Y  Various modifications and generalizations have been
introduced since then by a number of authors. In this chapter
we shall discuss the definitions that seem to be the most interest-
ing, as well as the relations between them. The discussion will
be restricted to functions of one variable. The definitions and'
some of the theorems are extensible to the case of functions of
two or more variables, but those extensions involve a number of
troublesome details.

Let ¢ and f be finite real-valued functions defined on the
interval [a, D], let P be a partition of [a, b] into subintervals
[x;-1, 7;], and let points z; be chosen so that ;1 £ z, £ z;. Set
N(P) = maximum of (z; — z;1), and

(1) S®; 1) = ) ¥e)lf@) - fz] = ) ¥(z) Af.

When no ambiguity can arise, we may write S(P; f), S(P; ¢) or
merely S(P) in place of S(’; ¥, f). Then, if
lim S(P; ¢, )
NP =0

exists and is finite, it is defined to be the Stieltjes integral of ¥
with respect to f and is denoted by the symbol

) [ v ar,

and v is said to be S-integrable with respect to f. We note that
this differs from the definition of the Riemann integral given in
Chap. VI only in replacing the length of an interval of the
partition P by the increment of f(z) over that interval.

1 See Annales de la faculté des sciences de Toulouse, Vol 8 (1894), p. J71.
260
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The following criterion is obtained at once from Theorem 10
of Chap. IV,

THEOREM 1. A necessary and suffictent condition for y(x) to be
S-tntegrable with respect to f on [a, b] is that

lim [S(P)) — S(Py)] = 0.
NP1)=0

Npsz8
A slight generalization of the S-integral has been considered by
Pollard and others.® We shall call it the GS-integral. It
depends on a modification of the limiting process. We shall say
that a partition P, is finer than P,—in notation, P, D Py—in
case all the division points for P, are used in P;.  The notation
is suggested by the fact that each partition is determined by its
points of division. We say that

lim S(P) =L
P>
in case
e>0:D:3P. ;P D P.-D-|S(P) — L| <¢

with the usual modification in case L is infinite. A necessary
and sufficient condition for the limit L to exist and be finite is
that

€>0:D:3P.3:P, D P..Py D P.-D [S(P)) — 8(Py)| < e.

The sufficiency of this condition may be proved by considering a
monotonie sequence of partitions P,, corresponding to a sequence
of numbers ¢, with ¢, tending to zero.

Now referring back to the sums S(P; ¢, f) defined in (1:1), we
say that ¢ is GS-integrable with respect to f when

lim S(P; vy, f)

| 35)
exists and is finite. In this case the limit is denoted by the
symbol

o~ b

@S) f v df.
The letters (S) and (GS) before the integral sign may be omitted
when no ambiguity can arise.

1 See Pollard, “The Stieltjes Integral and Its Generalizations,” Quarterly
Journal of Mathematics, Vol. 49 (1920-1923) pp. 73-138; Hildebrandt [5].
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It is easy to see that for either the S-integral or the GS-integral,
we may replace the functional value ¥(2;) in the sum S(P; ¢, f)
by any number between the upper and the lower bound of ¢ on
the interval [z;_,, x,], without changing the force of the definition.

A Riemann-integrable function is necessarily bounded, but an
unbounded function ¢ may be S- or GS-integrable with respect
to f when f has intervals of constancy. However, in the next
theorem it is shown that ¢ may be replaced by a bounded func-
tion ¢, (depending also on f) such that

[var=["vag @sz=w).

But when integrals with respect to functions f, of a sequence arg,
considered, it is a real restriction to assume that ¢ is bounded. !

THEOREM 2.  Suppose that ¢ is S- or GS-integrable with respect
tof, and let v = W A k) V (—k). Then, when k is sufficiently
large, we have Lr U df = j;z Y df for cvery x on {a, b]. In the case
of the S-integral, the points where Y. 5% ¥ are conlained in a finile
set of intcrvals each interior to an interval of constancy of f.  In the
case of the GS-inlegral, the points where Y, 7= ¥ are intertor {o a
finite number of wntervals of constancy of f.

Proof for the S-integral.—There exists a positive § such that

|5(P) — [ war] <1 whenever N(P) < 4. 1f E is the sct of

points at which ¢ has an infinite discontinuity, then f must be
constant on each interval of the open set N(¥; 8). This set
consists of a finite number of intervals, since each has length at
least 25. We select k& so that ¢ = ¥, on the complement of
N(E; 5/2). Thenif N(P) < §/2, S(P; ¥x) = S(P; ¢).

Proof for the GS-integral.—There exists a partition P; such
that when P D P, |S(P) — j;bnpdfl < 1. Then f is constant

on each interval of P, on which ¢ is unbounded, and hence when
k is sufficiently large and P D Py, S(P; yi) = S(P; ¢).
b
TueoreMm 3. The S-integral and the GS-inlegral /; ¥ df are
linear in f for each fixed ¥, and linear in ¥ for each fized f.
This is obvious from the corresponding properties of limits.
An operator K(¥, f) with these properties is called a bilinear

operator. Note that the domain of K as a function of f may vary
with ¢, and vice versa.




SEc. 1] DEFINITIONS AND FIRST PROPERTIES 263

For the case of the S-integral, we have the following necessary
condition for its existence:

THEOREM 4. If ¢ is S-integrable with respect to f, then ¥ and f
have no common discontinuities.

Proof.—Suppose ¢ and f are both discontinuous at the point c.
In omse f has right-hand and left-hand limits at ¢, and f(c — 0)
= f(c + 0) # f(c), we choose ¢ as a partition point of a partition
P with arbitrarily small norm. There is a number ¢ > 0, inde-
pendent of P, such that on one of the two closed intervals
abutting ¢, the oscillation of y is greater than e. Then, if the
norm N(P) is sufficiently small, we can construct two sums
81(P) and S.(P), differing only on one interval, such that

f(c + 0) — f(c)|
8i(P) — 8:(P) > e 5

In all other cases, there exist a number § > 0 and arbitrarily
small intervals with ¢ as an interior point, such that |Af| > 3,
where Af represents the increment over the interval in question.
There also exists a number € > 0 such that the oscillation of ¥
over every such integral is greater than e. Thus for partitions P
with norm N (P) arbitrarily small, we can construct sums S,(P)
and S2(P) such that S;(P) — Sa(P) > €8. Hence in both cases
we have a contradiction with the criterion of Theorem 1 for the
existence of the integral.

In case f is a step function and ¢ is continuous at the jumps
of f, it is easily seen that the S-integral of ¢ with respect to f
exists. We shall consider the case when f has only one jump,
say at the point ¢. Then for every partition P, S(P) =
¥(%) [f(c + 0) — f(c — 0)] and, when N(P) tends to zero, S(P)
tends to the value ¢(c)[f(c + 0) — flc — 0)].

For the GS-integral, the situation is slightly different.

THEOREM 5. If ¢ s GS-integrable with respect to f, then ¥ and f
have no common discontinusties on the right, nor on the left.

Proof —Suppose ¢ and f are discontinuous on the right at c.
Then there exist a number ¢ > 0 and points 23, 23, and d arbi-
trarily near ¢, with ¢ £ 21 < 2, < d, such that |[f(d) — f(c)| > ¢
|¥(z1) — ¢(22)] > e. Hence for every partition P with ¢ and d as
successive partition points, we may choose sums S1(P) and Sx(P)
such that S;(P) — Sz(P) > €. From this it follows that ¢ is
not GS-integrable,
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Now let f(x) =0fora =z =S¢, f(x) =y forc <z S b, and
let ¥(z) be continuous on the right at ¢. Then it is easily seen

that (GS) f ¥ df exists and has the value v¢(c). The extension
to other cases is obvious.

THEOREM 6. When a function ¢ is S-tntegrable with respect to f,
1t 18 also GS-integrable, and the two integrals are equal.

This is an immediate consequence of the definitions. Theorem
4 and the remark preceding Theorem 6 show that the converse
is not true. However, we can prove the following result:

TraeoreM 7. When ¢ and f are bounded and have no common
discontinuity and ¢ is GS-integrable with respect to f, it is alsb
S-integrable.

Proof—By hypothesis, corresponding to an arbitrary ¢ > O,\
there is a partition P, such that for every refinement P, of P,
we have

(12) sy~ [Pvif <.

Let yi, - - -, y, be the division points of P,, where a < y; < b,
and let M |¢(.r);, M z |f(z)|. Then there is a number & > 0
such that, if lx — y,| < 6, we have

W(x) — ¥(y,)] < ¢/2Mq if ¢ is continuous at y;,
If(x) — [(y,)| < ¢/2Mq if ¢ is discontinuous at y;.

Now let P be any partition with N(P) < é§ and let P, be the
partition formed by using all the division points of P and P..
If S(P) = ) $(@)lf() — f@i)], we may choose the func-

tional values of ¢ for S(P;) so that S(P.) — S(P) reduces to at
most ¢ terms of the form

W) — ¥Elf(w) — )],

where one of the values u,, v, is 3, and the other is either z; or
T4—1, and where y; is in the interval [zi—;, Z]. T%en by (1:3),
SPy) — S(P)| < ¢, and hence by (1:2) |S®P) — [ v df < 2e
Suppose ¢ is S-integrable or GS-integrable with respect to f
on the interval [a, b], and let [¢, d] be a subinterval of [a, b].
Then ¢ is integrable in the same sense on [c, d], as is easily shown
by use of the Cauchy condition. On the other hand, if ¢ is
GS-integrable with respect to f on [a, b] and on [b, c], it is so on

(1:3)
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[a, ¢]. But Theorem 4 shows that this result does not hold for
the S-integral.

TurorEM 8. Integration by parts. When (S) j v df exists,
®) [ * 7 dy also exists and

) [[vdf + () [ fav = yB)®) — va)f(a).

The same relation holds for the GS-integral.
Proof —Let

S, ¥) = ) JEl(@) — v,

i=1
SPy ¥ ) = ) V@@ — f@d] + ) $@liE) — 1),
j=1 j=1

where zo = a, z, = b. We note that the partition P, is obtained
from P by using all the points x, and z; as points of division.
When z; = z; or z; = x,-;, the corresponding term in the sum
drops out. Obviously P; is finer than P, and N(P;) < N(P).
Also

SPy; ¥, 1) + 8P f, ¥) = $O)(©) — ¥(@)f(a).

By taking limits, we obtain the conclusions desired.

The next theorem motivates the restriction that is commonly
made that the function f be of bounded variation. But the
theorem on integration by parts shows that the Stieltjes integral
may exist in important cases when [ is not of bounded variation.

THEOREM 9. If every continuous function ¢ 1s GS-integrable
with respect to f, then f is of bounded variation.

Proof.—Suppose f is not of bounded variation on the interval
la, b]. Then by the method of successive subdivision, a point X
may be determined such that for every interval [¢, d] to which
X is interior, f is not of bounded variation on [¢, d]. In case X
is at a or at b, the requirement of interiority is waived. Hence f
fails to be of bounded variation on every interval [X, d], or else
[ fails to be of bounded variation on every interval [¢, X]. For
definiteness, we consider the latter case and suppose first that
[f(z)] £ M on a left-hand neighborhood of X. Then there exist
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points ¢, €1, * * *, Cp, With a =¢o <1 < - < ¢p < X,
Ifien)| = M, and

Zlf(c,) — flemn)] + 1K) — flep)| > 20 + 1.

i=1

Hence

Y 1) = fe] > 1.

i=1

The process may be repeated for the interval [c,, X]. By a
sequence of such repetitions we obtain an increasing sequence of
points ¢; approaching X, and an increasing sequence of mtcger§
Dk, such that

Pka1

(1:4) Y ) = fe-nl > 1.

J=pkt+1

If we let 9; = 1/k for py—y < j < pi, we have

o«

(1:5) Y alfe) = el = +.

i=1

In case f has an infinite discontinuity on the left at X, it is easy
to see that we may still obtain (1:4) and so (1:5).
Now set

Y(e) = Sgn [f(cl) - f(cl’"l)]r
¢ Y(x) = ¢(c1) for asz=oa,
Y(@E) =0 for X2,

and extend ¢ to be continuous on [a, b], for example, by making
it linear in the intervals where it is still undefined. Whenever
[¢;—1, ¢i] is an interval of a partition P, we may take

¥(e)lf(e) — fle-0] = nlfe) — flei-)l

as the corresponding term of S(P). Hence for p > 0 and an
arbitrary partition P, we can find a finer partition P such that
S(P) > p, simply by using enough of the points ¢, as partition
points. Then ¢ is not GS-integrable with respect to f.
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The accompanying figure illustrates a simple case when the
G'S-integral exists but the S-integral does not. It also illustrates

the formula for integration by parts. The area bounded by
ADEGKLNP equals (GS)[¢ df, and the area bounded by CBD-
EGKLNQ equals (GS)ffdy. The definition of the S-integral is
inadequate to decide between HKL and HML as possible parts
of the boundary. If the point S were a point on the graph of
¥(z) in place of R, the definition of the GS-integral would also be
inadequate to decide, but the LS-integral (to be discussed in
Sec. 3) would decide for HML in the case of [y df and for HKL
in the case of [fdy. From this we see that the formula for
integration by parts does not always hold for the LS-integral.

2. Functions of Bounded Variation.—We have seen in Chap.
X, Sec. 5, that if f(x) is of bounded variation on [a, b] and ¢(z),
p(x), n(z) are, respectively, its total, positive, and negative
variations, then

(2:1) f(z) = fla) + p(x) — n(x), =) = p(&) + n(z).



268 THE STIELTJES INTEGRAL [Cuar. XII

The decomposition (2:1) of f(z) into the difference of two non-
decreasing functions is 8 minimum decomposition, in the sense
that, if f(z) = g(z) — h(z) where g and h are nondecreasing, then
for every subinterval of [a, b] we have Ap < Ag, An £ Ah. For

Ap + An = At £ Ag + Ah,
Ap — An = Ag — Ah.

By adding we obtain Ap < Ag, and by subtracting we obtain
An £ Ah.

A function f of bounded variation may also be decomposed
into its continuous part and its jump function. We may suppose
that f is nondecreasing, and then the two expressions ’

[f(e + 0) — (o],

asc<b

U(e) = fle = 0)],

a<csh

have no negative terms and at most a denumerable infinity of
positive terms, so they represent finite or infinite series which
will remain convergent if some of the terms are omitted. ILet

@2) i@ = Y Ue+0—f@l+ ) [ —fe- 0l

asc<z a<csz

Then j(z) is nondecreasing. It also has exactly the discontinui-
ties of f. For by taking & sufficiently small, the series j(z + )
— j(z) may be made to exclude any finite set of terms of the
series for j(b) except the term [f(z 4+ 0) — f(z)], so that j(z + 0)
— j(@) = f(x + 0) — f(z). The same argument holds for left-
hand discontinuities. Then g(z) = f(x) — j(z) is continuous
and is also nondecrcasing, as is easily verified. A jump function
is characterized by the fact that it is the sum of an absolutely
convergent series of step functions, each of which is discontinuous
on only one side of a single point, and vanishes at z = a. In
such a series, terms having the same discontinuity on the same
side may be grouped together. We see that after such a group-
ing a discontinuity of the sum of the series is exactly the dis-
continuity of some one of the terms, so that the function defined
by the series is its own jump function as defined above.

If p and n are the positive and negative variations of f, the
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jump functions of p and = are, respectively, the positive and
negative variations of j, since each jump of p is a positive jump
of f and hence of j. From this we find that, if g = f — 7, the
total variation of f is the sum of the total variations of g and j.
Still another decomposition of f is that into its absolutely
continuous part and its function of singularities. The derivative
f'(z) is Lebesgue-integrable, by Theorem 30 of Chap. X, and

ﬁ f dz is absolutely continuous. The function
s(z) = f(z) — f(a) — [ 1 da

is called the function of singularities of f(x). It is identically
zero if and only if f is absolutely continuous. The jump function
of f is included in the function of singularities.

The class of functions of bounded variation is linear and, if f
and g are two such functions, we have

tcd(f + g) é tcd(f) + lrd(g)’

where the notation (.«(f) is used temporarily to denote the total
variation of f over the subinterval [¢, d]. From this we may also
deduce the inequalities

) ta(f) — tea9) = ta(f — 9),
(2:3) tedlias(f) — Lac(9)] = tealf — )

3. Further Definitions and Relations between Integrals.—The
upper and lower integrals of ¥ with respect to f are useful when f
is a nondecreasing function. Under this restriction we may set

U; = Lu.b. ¢¥(z) on [z,, 7],
L, = glb. ¢(z) on [zj-, zi],
S*P;y, 1) = ), U Al,

2
S*(P; \bif) = ZLJ Af,
)

[ 9@ df = g1b. 5*@3 4,9,
‘L ® (@) df = Lub. S«(P; ¥, f).

Here it is understood that 0- = 0, so that the upper and lower
integrals may still be finite even when y is unbounded. As
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elsewhere in this chapter, f is assumed to take only finite values
on the closed interval [a, b].

If P, and P, are arbitrary partitions of [a, b] and P; is the parti-
tion formed by using all the points of both P; and P;, we see at
once that

3:1) Sx(P2) £ Sx(P3s) £ S*(Ps) < S*(Py),

and from this it follows at once that

(3:2) [P v@dr = [ @ dr

Tueorem 10. A necessary and sufficient condition that ¢ be
GS-integrable with respect lo a nondecrcasing function f is that thé,
upper and lower inlegrals of ¥ with respect to f be equal and finite..
The common value of the upper and lower tnlegrals then equals the
GS-integral of ¥ with respect lo §.

This theorem is ecasily verified by use of the fact that, when
additional partition points are inserted in P, the sums S*(P) do
not increase, and the sums Sx(P”) do not decrease, so that

f” vaf =lim 8*®),  [*ydf = lim S«(P).
¢ § o) Ja PO

CoOROLLARY. Another necessary and sufficient condition is that
Jor every € > Q, there exists a partition P such that S*(P; ¢, f) and
Sx(P; ¢, f) are finite and S*(P; ¢, f) — Sx(P; ¢, f) < e

TrEOREM 11. A necessary and sufficient condition that ¢ be
S-integrable with respect to a nondecreasing function f is that

lim [S*(P; ¥, f) — S«(P; ¢, /)] = 0.
N(P)=0

Proof.—To prove the sufficiency of the condition, we note that,
since Sx(P) < 4+« and S*(P) > — «, it is clear that both
must be finite when N(P) is sufficiently small. From (3:1) it
follows that the intervals [S%(P,), S*(P))] and [S«(P2), S*(P2)]
always have at least one common point. If each of these
intervals has length less than ¢, then |S(P,) — S(P2)] < 2¢, since
S(P,) always lies in the first interval and S(P;) in the second.
Thus Theorem 1 yields the sufficiency of the condition. The
necessity follows from the observation that the value of S(P)
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may be made arbitrarily close to either S*(P) or Sx(P) by a
proper choice of the points z;.

Still using the restriction that f is nondecreasing, we may obtain
a measure function m,(7) defined for all subintervals s of [a, b], as
was indicated at the beginning of Chap. X. Then the processes
of that chapter yield the f measure m;(E) and the Lebesgue-
Stieltjes or LS-integral. Some further properties of that integral
and its relations with the S-integral and the G'S-integral will be
developed in this chapter.

1t is easily seen that, when f is a nondecreasing jump function
having only a finite number of jumps, and ¢ is single-valued and
finite at the discontinuities ¢; of f, then the Lebesgue-Stieltjes

integral of ¥ with respect to f exists and has the value Z ¥(c)

i=1
[f(e; + 0) — f(c; — 0)]. This agrees with the value of the
GS-integral when it exists.

Various further modifications of the integral of Stieltjes
have been considered by a number of authors. The reader
is referred to the papers of Hildebrandt ([4], [5]) which contain
bibliographies.

Many of the following theorems contain three theorems, stated
simultaneously for the S-integral, the GS-integral, and the
LS-integral.

TreorkeMm 12. Let f and g be nondecreasing funclions, with
Af = Ag on cvery subinterval. If

IRZ)
exists as an S-, GS-, or LS-inlegral, then
(3:3) IRZ
also exists in the same sense, and when ¢ 2 0, we have

(3:4) [ vdg= [ var.

Proof for the GS-integral.—It is easily seen that S*(P; g) is
finite whenever S*(P; f) is, with a corresponding relation for S,
and that

(3:5) S*P; g) — Sx(P; g) £ 8*(P;f) — S+(P; f)
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for every partition P. Hence the existence of (3:3) follows from
the Corollary of Theorem 10. When ¢ 2 0 we have S*(P; g)
< S*(P; f), and from this inequality (3:4) follows.

Proof for the S-Integral.—This case follows immediately from
Theorem 11 with the help of (3:5).

Proof for the LS-integral.—Suppose first that ¢ is bounded, and
let (a,) be a bounded sequence of step functions converging to y
except on a set E with m;(E) = 0. Then m,(E) = 0, and hence
there exists

Lbllzdg=li:n [lb a, dg.

When ¢ = 0, we may suppose a, = 0, and so obtain the inequ
ity (3:4). In case ¢y is unbounded, suppose ¥ = 0, and let
Yo =¢ An. Then ‘

[ vadg = [ vadrs [,

and so the desired result follows from Theorem 12 of Chap. X.
As was indicated in Theorem 3, the S-integral and the GS-inte-
gral are bilinear operators. To obtain a similar result for the
LS-integral, we need the following property:
Lemma 1. Suppose that g and h are nondecreasing functions
and that ¢ is LS-integrable with respect to g, and also with respect
to h. Then  is LS-integrable with respect lo f = g + h, and

(3:6) f¢df=£¢dg+f¢dh.

Proof —Suppose first that ¢ is bounded. By Lemma 3 of
Chap. XI there exist functions u— and »—+ from the class N
and pt and »* from the class ¥+ such that

(3:7) Sy Spt,rtsy Sy
b b b

(38) [ u+ag=[wdg= [ was,

(3:9) va-“fdh=ﬁapdh=ﬁ v~ dh.

Let ™+ = py=+V v+ M= = yt—= A v~ Then A+ is in M,
M= is in I+, and hence each is measurable with respect to f.
Also A=t may be substituted for p—+ and »—+*, and A+ may be
substituted for u*= and »*= in (3:7) to (3:9). Since (3:6) holds
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for step functions, it holds for all functions in M—+ and M+
Hence by the converse part of the lemma just quoted, ¥ is meas-
urable with respect to f and (3:6) holds. In casey is unbounded,
we may suppose ¥ = 0, and let Y. = ¢ A n. Then, by the
result already proved for the bounded case,

[ ¥nds = 7 vadg + [? v dn.

Theorem 12 of Chap. X then shows that ¢ is integrable with
respect to f, and (3:6) continues to hold.

We extend the definition of (LS)[¢ df to the case when f is a
function of bounded variation but not monotonic by means of a

minimum decomposition f(x) = p(z) — n(z), where p and n are
nondecreasing. We define

@10) @) [[vdf = @S) [wip— @s) [y an,

when both integrals on the right exist.

When g¢,(z) and g.(z) are nondecreasing and f(z) = g(z)
- g?(z)) then

[vir=["vdg — [ vdg,

whenever the integrals on the right exist. For, we always have
Ag, = Ap, Ag: = An, as was shown at the beginning of Sec. 2.
Hence the integrals on the right of (3:10) exist, by Theorem 12.
Then by the lemma just proved,

[Pwap+ [[vdgs= [win+ [ vdg.

It is now easy to verify the following result:

TuroreM 13. The LS-inlegral [ df is a bilinear operator.

The next theorem will justify our restricting attention to
nondecreasing functions f in certain later proofs.

TaEorEM 14. Let y(z) be bounded and f(x) be of bounded
variation, and let t(x), p(z), and n(z) be, respectively, the total,
positive, and negative variations of f. Then a necessary and suffi-
cient condition that /; ° ¥ df exist as an S-integral, GS-integral, or

LS-integral is that [ ’ Y dt exist in the same sense. A second
a b b
necessary and sufficient condition 18 that j; ydp and L ¥ dn
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exist in the same sense. The condition that  be bounded is to be
omitted in the case of the LS-integral.

Proof.—For the case of the LS-integral, the statement follows
directly from the definition and Theorems 13 and 12. To prove
the necessity of the first condition in the case of the GS-integral,
we note that for an arbitrary ¢ > 0, there is a partition P such

that we have simultaneously l L ’ vdf — S(P; f)‘ < ¢ and
1(b) — z [f(xis1) — f(x;)] < e. From the first of these inequali-
J

ties we find thatz (U, — L)|f(xj41) — f(x,)| < 2¢, where U, and
J .
L; have the meanings indicated at the beginning of this section.
\
If [¥(=)| = M on [a, b], "
Y (U = L)[t@an) — Uz) = f@) = S]]

< 2MU®) — Y |f(r,) — f@)]] < 2Me.
Hencez (Us = L)lUaer) = He)] S 200 + e Thusby The-

orem 10 ¥ 1s GS-integrable w 1th respect to {. The necessity of
the second condition follows from Theorem 12. The sufficiency
of the conditions then follows from the linearity of the integral.
To prove the conditions for the S-integral, we recall that f(x)
and #(z) have the same discontinuitics. Since ¥ was assumed to
be bounded, Theorems 6 and 7 are applicable to obtain the desired
result.

TaeorEM 15. Suppose that f(x) is a function of bounded
variation and that ,(z) and Yo(x) are bounded and S-, GS-, or
LS-integrable with respect to f. Then the functions ¥3 = Y1 V s,
Vi = 1 A ¥ and |Y1| are integrable with respect to f in the same
sense. The condition that ¥, and Y. are bounded is {o be omatied
in the case of the LS-integral and, when f is monotonic, also in the
case of the S- and GS-integrals.

Proof —By the last theorem, we may restrict attention to the
case when f is nondecreasing. For the LS-integral, the result
was obtained in Theorem 8 of Chap. X. For the 8- and (3S-inte-
grals we may apply Theorem 11 and the Corollary of Theorem
10, respectively. For the oscillation of ¢5 on a given interval
is not greater than the sum of the oscillations of ¥, and y,, and
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hence

S*(P;¥s) — S« (P; ¥s) < S*(P; ) — Sx(P; 1) + S*(P; y)
= Sx(P; ¥n).

A corresponding inequality holds also for y. Since |¥| =

¥V (—¢), the result for |y, follows from the linearity of the
integrals.

THEOREM 16. Suppose that the functions f and h satisfy the
inequality |Af| £ Ah on every subinterval, where h is a nondecreas-

ing bounded function. If L ’ ¥ dh cxists as an S-, GS-, or LS-inte-

b
gral, then L ¥ df exists in the same sense, and

(3:11)

[Tva = [yl an.

Proof —If t(z) is the total variation function of f, we have
At £ Ah, so that the existence of L ’ ¥ df follows from Theorem
12 and the linearity of the integral.

To obtain the inequality (3:11), let p(z) and n(z) denote,

respectively, the positive and the negative variations of f, and
letyr =¢y VO, ¢o= —{ A0). Then

[fvar = [Tvidp+ [(vadp+ [yidn+ ["vadn
= [Twias [ wlan,

by the bilinearity of the integral and inequality (3:4).
CoroLLARY. Suppose f(x) is of bounded variation, ¥(z) is S-,
GS-, or LS-integrable with respect to f, and |¢(z)| £ M. Then

IRZIER 20!

where 1(b) s the total vartation of f(z) on [a, b].
THroREM 17. Suppose that each function g.(r) ts nondecreas-

ing and that the sertes zg,.(a) and zg,.(b) converge. Then the
series z gn(x) converges uniformly on [a, b] and defines a nondecreas-
ing function f(x). Necessary conditions for the existence of
/a ’ ¥ df as an S-, GS-, or LS-integral are
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(i) All the inlegrals L ’ ¥ dg,, exist in the same sense;

(ii) The series z /; ’ |¥| dga converges;
and then we have

(3:12) [war=Y [ vdon.

For the LS-iniegral, these conditions are also sufficient. For the
S- and GS-integrals a set of sufficient conditions is obtained by
replacing (ii) by the stronger condition that ¢ is bounded.

Proof —The uniform convergence of 2 gn(z) follows from the

inequality

3(®) = (@) S 0a(8) = g2(c). |

The necessity of the conditions follows from Theorems 12 and 15
and the relations

¢13) [ Waz [ I¢«ld<i gu> = 3 [Pl den

n=1 ne=

In the case when ¢ is bounded, the equation (3:12) follows from

q
the Corollary of Theorem 16, with f replaced by <f - z g,,)-

1
When ¢ is unbounded, we may suppose ¢ = 0, and set ¢, =

v A k. Then

@19 [ydr = ) [ wndgns Y [y dg.
n=1 1

n=

But by Theorem 2 for the S- and (/S-integrals, and by Theorem 12
of Chap. X for the LS-integral,

[var=tim [ v,
so that

«®

[ear= ) [ v

n=1

But this with (3:13) above yields the desired result.
Proof of Sufficiency for the S- and GS-integrals.—lf L < ¢ £ U
and ¢ > 0, we may choose an integer ¢ such that
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W =L ) lgld) = gu(@] < e,
n=g-1
and hence

©

D IS*P; ga) — Su(Pi gl < e

n=qg+41

for every partition P. But
q
S*P; ) = S Pif) = Y [S*P; 0) — Su(P; )]
n=1

), IS = Se(P; gl
n=g+1
The desired result now follows by application of Theorem 11
for the S-integral, and of the Corollary of Theorem 10 for the
G'S-integral.

Proof of Sufficiency for the LS-integral.—We take first the case
when ¢ is bounded. Then by Lemma 3 of Chap. XI there exist
functions u, from the class M+ and », from the class M+,
having the same bounds as ¢, such that

(3:15) pn S Y = vy, Lb#ndg,.= /;bxbdg..: Lbu,.dg,..

Let u(x) = Lub. u.(x), v() = gl.b. v.(z). Then p and » are
Borel-measurable and

(3:16) Un S uSY S v Sy,
and so
(3:17) Judg. = [V dg. = [vdgn.

By the first part of the theorem, since g and v are LS-inte-
grable with respect to f,

b % b b
Lndf—f z /a udg,. le;'pdgm

7= ] n=

[rar=3 [vam=

§ [ van

n=l n=1
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and hence by Lemma 1 of Chap. XI, u = » = ¢ almost every-
where with respect to f, and so y is LS-integrable with respect
tof. When ¢ is unbounded, we may suppose ¢ = 0. Then the
inequality (3:14) with Theorem 12 of Chap. X shows that ¢ is
LS-integrable with respect to f.

CoroLLARY. Let f(x) be of bounded variation and let j(x) be

its jump function, defined by formula (2:2). Then L ’ ¥ dj exists
(i) as an LS-integral when the series z v(e)[f(c + 0) — f(c)] and
Z'/'(C)[f(c) — f(c — 0)] are both absolutely convergent; (ii) as a

GS-integral when ¢ is bounded and ¢ and f have no common dis-
continuities on the same side; (iii) as an S-integral when ¢ s
bounded and ¥ and f have no common discontinuities. In each case '

[Pvdi =Y w@lfe+0) - jc — 0)1

We can now obtain necessary and sufficient conditions for the
b . .

existence of [1 ¥ df as an S-integral or as a GS-integral, under
the assumption that ¢ is bounded and f is of bounded variation.
Let D denote the sct of discontinuities of ¢, {(x) the total variation
of f(z), and 7(x) the total variation of g(x) = f(x) — j(z), where
j(x) is the jump function of f(x). Let m, and m, denote the
measures associated with the nondecreasing functions {(z) and
7(z), respectively, by the processes of Chap. X.

TueoreM 18. Suppose that ¢ is bounded and f is of bounded

variation. Then _L ’ Y df exists (i) as an S-integral if and only if

m,(D) = 0; (ii) as a GS-integral if and only of m.(D) = 0 and ¢

and f have no common discontinuities on the same side.
Proof.—By Theorems 4 and 5 and the Corollary of Theorem 17,

b
the existence of L ¢ df in cither sense implies the existence of

/; bwdj in the same sense, and consequently that of L bwpdy.
Also if 7i(z) denotes the total variation of j(z), t =7 4+ 7y,
m; = m, + m,,, and hence m,(D) = 0 implies the existence of
S L ’ Y dj. Thus it is sufficient to consider the case when f(z)
is continuous, and then the distinction between the S-integral

and the GS-integral disappears, by Theorems 6 and 7. By
Theorem 14 we may further restrict f(z) to be nondecreasing.
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Now let (P,) be a sequence of partitions, each obtained from the
preceding by further subdivision, and set

wa(z) = 0 if z is a partition point of P,,
wa(z) = oscillation of ¢ on the interval of P, containing z, for
all other values of z.

Then the sequence of step functions w, is nonincreasing and
bounded, and hence \(z) = lim w,(z) is nonnegative and LS-inte-

grable with respect to f, and /; b)\df = lim [‘ ’ w, df. But

[ ® wndf= S*(P.) — S«(P.), and it follows with the help of the
Corollary of Theorem 10 that ¥ is GS-integrable with respect to f
if and only if there is a sequence (P,) such that lim L w, df = 0.

By Lemma 1 of Chap. XI the last statement holds if and only if
A = 0 almost everywhere with respect to f.  Since the set of all
the partition points of the P, forms a denumerable set, it may be
neglected, so that A = 0 almost everywhere with respect to f if
and only if m;(D) = 0.

TueoreMm 19. Suppose that f s of bounded variation, and ¥ is
S- or GS-integrable with respect to f.  Then ¢ is also LS-integrable,
and the integrals have the same value.

Proof —The bounded function ¢, of Theorem 2 in Sec. 1 is
equal to ¥ almost everywhere with respect to the total variation
function t(z) of f, so that we may suppose ¢ is bounded. As in
the proof of Theorem 18 we may also restrict attention to the
case when f is continuous and nondecreasing, and then the proof
is the same as that given for Theorem 14 of Chap. X.

We shall close this section with some theorems relating to
change of integrator. If 6(x) is LS-integrable with respect to

h(z), we note that g(z) = L o dh may fail to be well-defined at

points of discontinuity of h(z). For convenience in what follows
we define g(z) at every such point ¢ so that

[g(e) = gc — O)[h(c + 0) — h(0)]
= [g(c + 0) — g(©)l[h(c) — hlc — O)].

LeMMA 2. Let h(z) be nondecreasing, and let 6(z) be nonnega-
z
tive and LS-integrable with respect to h. Let g(z) = ]a 0 dh.
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Then, if my(E) = 0, alsom,(E) = 0. Ifm,(E) =0,thenb(z) =0
almost everywhere with respect to h on E.

Proof.—1If C is a sum of intervals, we note that m,(C) = ,[c 6 dh.
Since [0 dh is absolutely continuous with respect to h, for each
€ > 0 there is a & > 0 such that m,(C) < ¢ whenever m,(C) < 8.
From this the first part of the Lemma follows at once. Similarly
we find that when m,(E) =0, [, 6dh =0, and so the last part
follows from Lemma 1 of Chap. XI.

TraeoreM 20. Let f(x), h(z), and k(z) be nondecreasing, and
let 8(z) be nonnegative and LS-integrable with respect to h. Suppose
that  ds LiS-integrable with respect to § and that f(z) = [ 0dh
+ k(x). Then ¥8 is LS-integrable with respect to h, and

[war= [voan+ [ yak.

Proof —Let g(z) = j; * 0 dh. By Theorem 12, ¢ is integrable
with respect to g and to k. If (@) is a sequence of step functions
converging to ¢ almost everywhere with respect to g, we have
lim a,8 = Y0 almost everywhere with respect to 4, by Lemma, 2.

n b b .«
Since f adg = [‘ af dh for every step function «, we have

/; ’ vdg = L ’ ¥0 dh when ¢ is bounded, by Theorems 11 and 7

of Chap. X. The formula is extended to the unbounded case
by the usual device, using Theorem 12 of Chap. X.

CoroLLary. If f(x) s absolutely continuous, and ¥(x) s
LS-integrable with respect to f, then y(x)f'(z) ts L-integrable, and

[Pviar= [ da

Here we use the term “L-integrable” in place of “LS-inte-
grable with respect to z.”

We have already noted in the Corollary of Theorem 17 that
f¥ df reduces to an infinite series when f is a jump function.

THEOREM 21. Let h(x) be nondecreasing, let 6(x) be LS-inle-

grable with respect to h, and let f(z) = L *0dnT Suppose that
Y¥(z) 18 S-, GS-, or LS-integrable with respect to h, and that either
¥ or 0 1is bounded. Then ¢ 1s iniegrable in the same sense with
respect to f, provided f 18 properly defined at the discontinuities of h.
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Proof—When 6 is bounded, this follows from Theorem 16.
For the remaining case, we may suppose 6 = 0 and, if necessary,
we may decompose h into its continuous part and its jump
function. For the S- and G'S-integrals, the result follows from
Theorem 18 and Lemma 2. With the help of Lemma 2 the proof
for the LS-integral is like the corresponding part of the proof of
Theorem 12.

An important special case of Theorem 21 occurs when i(z) = «
and f(z) is absolutely continuous. The example ¢(z) = 6(z)
= 7" shows that we cannot allow both ¥ and 8 to be unbounded
without some other restriction. However, it is easily seen that,
whenever ¢ is measurable with respect to £, it is measurable with
respect to the total variation of f.

4. Convergence Theorems.—In this section we shall consider
various sets of conditions justifying interchange of order of
integral and limit, as well as some examples in which such an
interchange is not valid. By Theorem 13 of Chap. IV, it is
sufficient to consider the case of sequences of functions.

Since in many cases the variable z will not need to be written,
we may conveniently use the notation t(f) for the total variation
function i(z) of f(z).

Following are the conditions from which the hypotheses of
Theorems 22 to 28 will be selected:

A,. The functions gi(x) and f(z) are of bounded variation.

A,. The functions g:(z) and f(z) are of uniformly bounded
variation.

A,. There is a nondecreasing function h(x) such that gi(z)
and f(z) satisfy the inequalities |Agi| < AR, |Af| < AR on
every subinterval of [a, b].

A,. The functions gi(z) and f(z) are absolutely continuous
uniformly in k.

B,. There is a set E dense on [a, b] and including the points
a and b, such that 1i;n gi(z) = f(x) on E.

B, lm (g — f) = 0.

Bs. gr = f for each k.

C,. The functions y.(z) are S-, GS-, or LS-integrable with
respect to each function gi(z).

C,. The functions y.(z) are S-, GS-, or LS-integrable with
respect to h(z).
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Cs. Theintegrals [¥. dh are absolutely continuous with respect
to h uniformly in 7, and bounded uniformly.

Cs. The functions y¥,.(z) and 6(x) are bounded with respect to
z and n.

Cs. The functions y.(z) and 6(zx) are continuous on [a, b].

D,. lim ¢, = 6 almost everywhere with respect to each

n
function ¢(gx).
D,;. lim ¢, = 8 almost everywhere with respect to h.

D;. lim ¢, = 6 uniformly on [a, b].

D4 ¢ = 0 for each n.
We are interested in the validity of the formula

(4:1) tim [y, dge = [ 04,

"= o

k=

where the integrals exist in a suitable one of the thrce senses
which we are considering. When either B; or D4 holds, the
double sequence reduces to a simple sequence. Theorems for
these cases arc needed as preliminaries to the treatment of the
double sequence. Theorem 22 is sometimes known as the Helly-
Bray theorem.

TueEOREM 22. A, By, Cs, Dy imply (4:1), where the integrals
are S-integrals.

Proof—If P is a partition of [a, b] into intervals [z,_, 2], let
w(P) denote the maximum oscillation of 8 on an interval of P.

Since 8 is uniformly continuous, lim w(P) = 0. Let
N(P)=0

S0, = ) 0@)ge(®) — gzl
Then ’

2 5P; 0,00~ [ odg| =) [ 166) — 61 dgs

= w(P)Ugn),
by the Corollary of Theorem 16.
Hence N(llipr)ri . S(P; 8, gx) = L ’ 6 dgx uniformly with respect to k.
When the partition points of P are required to belong to the set
E, we have lim S(P; 6, g:) = S(P;8,f), provided the same points

= o
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z; are used in all the sums corresponding to a given partition P.
Since the integrals are known to exist, we may restrict attention
to a particular sequence of partitions and corresponding points
2i. Hence the desired conclusion follows from Theorem 2 of
Chap. VIL

TrEOREM 23. A., By, Cs, D; imply (4:1), where the tnlegrals
are S-integrals.

Proof —By the Corollary of Theorem 16, lim L ’ ¥ dgs

b . .
= [a 6 dgi uniformly with respect to k. From this and Theorem

22 the desired result follows at once.

This theorem could also be proved directly {rom the inequality
analogous to (4:2) for the sums S(P; ¥u, gi), since the functions
¥, are equicontinuous by Theorem 24 of Chap. VII, Sec. 4.

TuroreM 24. The function 6 s S-, GS-, or LS-integrable with
respect to f, and (4:1) holds, if A,, Bs, C1, C4, D3 hold.

Proof —For the case of the LS-integral, this was proved in
Chap. X. For the other cases, we note that every discontinuity
of @ is a discontinuity of some ¥, on the same side. Then
Theorem 18 shows that 6 is integrable in the proper sense, and
(4:1) follows from the Corollary of Theorem 16.

ToeoREM 25. The function 0 is S-, GS-, or LS-inlegrable with
respect to f, and (4:1) holds, if As, Bs, Cy, Cs, Dy hold.

Proof—The equality (4:1) follows from the Corollary of
Theorem 16 whenever it is known that [6 df exists. To prove
the existence in case of the S-integral, let D denote the set of
discontinuities of 6. Then by Theorem 18, the measure of D
with respect to the total variation of g is zero. The total varia-
tion of (f — gi) over an arbitrary sum of nonoverlapping inter-
vals is not greater than ¢(f — gi) over [q, D], and so approaches
zero with 1/k.  Since ¢(f) < t(f — gi) + t(gx) over every interval,
the total variation of f over the set D must also be zero, so that
(8)f6 df must exist, by another application of Theorem 18.

To prove the existence in case of the GS-integral, let jx and jy
denote the jump functions of gi and of f, respectively, and let
hi = ge — jx, hy =f —js. Then by the results of Sec. 2,
Uf — gi) = t(hy — hi) + (s — Jju), s0 that ,}mt t(hy — h) = 0.

By the proof in the last paragraph, 6 dh; exists. Every fiis—
continuity of f is a discontinuity of some g on the same side,
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since gi(x) — gr(a) approaches f(z) — f(a) uniformly on [a, b].
Hence 8 and f have no common discontinuity on the same side,
so that (GS) [0 df exists, again by Theorem 18.

When 6 is bounded and Borel-measurable and f is of bounded
variation, (LS) [0 df always exists. When 6 is not Borel-measur-
able but is LS-integrable with respect to each gi, we may show
that it is LS-integrable with respect to f, as follows. By Lemma
3 of Chap. XI, there are for each k, Borel-measurable functions
ui and »; such that

4:3) , Mk bé 0= wm, .
@) [mdi) = [ oditg) = [ wdie).

Then p = Lub. p and » = glb. » are Borel-measurable and \
also satisfy conditions analogous to (4:3) and (4:4). By (2:3), !
khm tHt(f) — t(gx)] = 0, and so, by (4:1) for the case of Borel-

measurable functions,

fwn(f) = [y au.

Since u < v, we have u = » almost everywhere with respect to
t(f) by Lemma 1 of Chap. XI. Thus ¢ = 6 almost everywhere
with respect to ¢(f), and thus 6 is LS-integrable with respect to
{(f), and so also with respect to f, by Theorem 12.

TreorEM 26. The function 8 s LS-tntegrable with respect lo f,
and (4:1) holds, if Ay, Bs, Cy, C4y Dy hold.

Proof.—By Theorem 4 of Chap. X, 6 is LS-integrable with
respect to each gi, and lim [y, dgi = [0 dgi. The functions

n

¥ and 8 are LS-integrable with respect to f, by Theorem 25, and
by the Corollary of Theorem 16, lim [y, dgr = [¥x df uniformly
k

inn,and lim [6dg, = [6df. Then (4:1) follows from Theorem 2
k

of Chap. VII.
Lemma 3. Suppose that As;, By hold. Then A. holds, and
klim gi(z + 0) = f(z + 0), llim gi(x — 0) = f(x — 0) for every =

on [a, b). -
Proof—Since |Agi] < Ah on every subinterval, and h has a
right-hand limit at each point, it follows from Theorem 1 of

Chap. VII that lim gi(zx + 8) = gu(z + 0) uniformly with
s=0+
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respect to k. Since the one-sided limits ge(z + 0), f(x + 0) are

k'n(.)wn to exist, they may be evaluated by restricting z + s to

lie in the set E and, since lim g,(z + 8) = f(z + s) for z + s in
k=

E, we may apply Theorem 2 of Chap. VII to obtain the desired
conclusion.
THEOREM 27. If A;, By, C,, C;, D, hold, then . and 0 are
LS-integrable with respect to f and to each g, and (4:1) holds.
Proof —By Theorem 7 of Chap. X, 6 is LS-integrable with
respect to k, and hence ¢, and 6 are LS-integrable with respect
to f and to each gi, and

o — O dgi < [ ¥ — 0] db,
'b b
W =0 df = [y~ 0] d,

by Theorem 16. Thus lim [; ’ Yndgr = /a "6 dgi uniformly with
respect to k. 'We shall next show that

(4:5) lim IRZ [ vas

for every function ¢ which is LS-integrable with respect to h,
and then (4:1) will follow from Theorem 2 of Chap. VII. By
definition of the integral, there is a sequence () of step functions
such that Cs and D; hold with ¥, replaced by a, and 6 replaced

by ¢, and hence lim L ’ a, dgy = L ’ ¥ dgi, uniformly with respect
n

to k, by the first part of the proof. But from Lemma 3 it follows
that lim L ’ an dge = f ’ a, df, and thus (4:5) follows from
k a

Theorem 2 of Chap. VII.

Attention is called to the special case when the functions f and
g« satisfy a uniform Lipschitz condition. Then the function h(z)
in A; may be taken to be a constant multiple of z, and the condi-
tions Cs, Cs, D2, may be expressed in terms of ordinary Lebesgue
integrals and measure.

TaeoreM 28. If Ay, By, Ce, Cy, D hold with h(z) = z, then ¥n
and 0 are LS-integrable with respect to f and lo each gi, and (4:1)
holds.

Proof —By Cs, C4, Dy, and Theorem 4 of Chap. X, 0 is L-inte-
grable, and by A, and Theorem 21, ¥, and 0 are LS-integrable
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with respect to each g, and to f. Also

/;b ¥ dgi = Lb ¥ngs, dz, L " 0dgi = L * 8. dz,

by the Corollary of Theorem 20. By A, and Theorems 28 and 20
of Chap. X, corresponding to an arbitrary e > 0, there is a
6 > 0 such that

folade <& [Irldz < '

whenever m(E) < é. From this it follows readily that there is a
constant @ such that {(g:) / lgxl dz £ Q. By D, and '1heo~
rem 18 of Chap. XI, hm m(E,.) = 0 for every ¢, where En,\

= El|¢n — 0] > €. Let M be a bound for |¢.(z)] and |6(z)|.
Then

[ o= 0 dg) <20 [, \iddz + e [ il de < @M+ Q)

b b
whenever n is sufficiently large, so that lim /; Vo dgr = L 6 dg;.

uniformly in k. The remainder of the proof parallels that for
Theorem 27.

The following examples illustrate the essential role of various
hypotheses in the preceding theorems:

1. Let () =0 for 0 Sz = 1/n, 3/nSx 24, ula) =1
for £ = 2/n, and let ¢, be linear on the two remaining intervals.
Let gi(z) =0 for 0 =z = 2/k, gulr) =1 for 2/k < z £ 4.
Then all the hypotheses of Theorem 23 are satisfied except Ds.

2. Let yn(z) = 2 sin (x/x) for 1/q. Sz < 1/n, ¢.(z) =0
for all other values of x. Let f(z) = 2’ cos (r/z). Then
S ﬁ)l ¥ df exists, the functions ¢, are continuous and converge
uniformly to zero but, if the sequence of integers ¢, increases
sufficiently rapidly, the sequence [; V. df diverges. By setting
8(z) = f(x), gr(x) = Yr(z), we obtain an example where all the
hypotheses of Theorem 22 are satisfied except A,.

3. Let 6(z) = cos (r/z), and let gi(x) = zsin (x/z) for
1/ge £ 2 £ 1/k, gi(z) = 0 for all other values of z. The
sequence of integers ¢: may be so chosen that
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q.“‘l

1< —1—<2.
m

m=k+2

1
Then the sequence L 6 dg, does not approach zero, but all the

hypotheses of Theorem 22 are satisfied except that 8 is discon-
tinuous at one point, and all the hypotheses of Theorem 25 are
satisfied except B..

4. Let 6(z) =1/z for 0 <z =1, 6(0) =0. Let gi(z) =
zV* f(x), where f(x) = z. Then ﬁ)] 0dgy =k 4+ 1, and ﬁ’l 6 df
does not exist. All the hypotheses of Theorem 25 are satisfied
except C4, and all the hypotheses of Theorem 27 are satisfied
except that no function h can satisfy A; and C, simultaneously.

5. Let 0(z) = 1/x for 0 <z =1, 600) =0. Let gi(x) =0
for 0 =z = 14" gu(@) ==z — g% for 4% = 2 2 04%, qu(a)
= 14k for 14! < 2 £ 1. This example has properties similar
to the preceding, except that ﬁ ‘1 6dg. =1n 2, ];1 6df = 0.

6. Let 6(z) = 1/x for 0 < xr =1, 8(0) =0. Let gu(z) =0
for 0 £ 2 < 1/k, ge(z) = 1/k for 1/k < 2 £ 1. This example
has properties similar to those for Kxample 5, except that now
A; cannot be satisfied.

Some theorems involving uniformity of convergence with
respect to a parameter may be obtained from the preceding
theorems by means of an indirect proof. Theorem 29 is an
extension of Theorem 23, Theorem 30 of Theorem 27, and
Theorem 31 of Theorem 28. We shall be concerned with families
of functions gi.(x), fo(x), ¥as(), 6,(z), and the hypotheses will
be chosen from among the following:

As.. The functions gi, and f, are of uniformly bounded
variation.

As.. There is a nondecreasing function h(z) such that |Ag|
< Ah, |Af,| £ Ah for every subinterval of [a, V] and every
k ando.

A4. The functions gi.(z) and fo(z) are absolutely continuous
uniformly in & and o.

Bi,. There is a set E, independent of o, dense on [a, b] and
including the points @ and b, such that likm gro() = fo(2)

for z on E, uniformly in o.
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Cy. The functions y¥,.,(z) are LS-integrable with respect to
h(z).

Cs. The integrals [¢..dh are absolutely continuous with
respect to h uniformly in » and o.

Cy. The functions ¢,.,(z) and 8(z) are bounded with respect to
z, n, and o, and 6 is independent of .

Cs.. The functions ¢,,(z) and 6,(x) are continuous on [a, b]
uniformly with respect to o.

Ds,. There is a set K, independent of ¢ such that m.(E))
= h(b) — h(a) and for z on E,, lim ¢,.(z) = 6(z) uni-

formly with respect to ¢, where 8 is independent of o.
Ds,. lim ¢n.(z) = 6,(x) uniformly with respect to z and o.
n

The conclusion in each of the next three theorems will be the
validity of the statement:

(4:6) lim / Yno dke = / 6, df, uniformly in ¢.

n= x
k=

The existence of the integrals on the right as LS-integrals follows
from the preceding theorems.

THEOREM 29. Ass, Bis, Cse, D3 tmply (4:6).

Proof—If (4:6) is false, there exist a positive number ¢ and
sequences (n,), (ko) (¢4), such that ng and k, tend to infinity, and

4:7)

[,b Vingr, Wiego, — L ’ 60, dfs, >

Let ¥F = Yuwp 0n = Ooyy o = Grese — Jou ;‘* =f,. From Cs,
and Dj, it follows readlly that the functlons ¥, (1:) are continuous
in z uniformly in z and ¢ and that hm (1//(, -0 ¢) = 0 uniformly

inz. From A, it follows that gq and f are of uniformly bounded
variation, and from B, that hm 9q *(z) = 0 on E. Then by the

proof of Theorem 22, hm / % dgq =0. By the Corollary of
Theorem 16, hm / (n//q 6 )dfq = 0. Combining the last

two statements leads to a contradiction with (4:7).
THEOREM 30. Ag,, Bis, Cos, Casy, D2s imply (4:6).
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Proof —As in the proof of Theorem 29, we are led to 4:7),
Let 'pq = 'Pﬁ'ﬂ'q - ’ gg = gk.v,, fq = fﬂ' BY D20, hm wq = 0 on

E,, and by Cs,, the integrals f|y;| dh are absolutely continuous
with respect to h uniformly in ¢. Hence lim L ’ Vil dh =0
[']

and then by Theorem 16,
(4:8) tim [* s dgs =o.
By Theorem 27,
. b * *
(4:9) lim [*0d(g — 1) = 0.

Combining the last two statements leads to a contradiction with
4:7).

THEOREM 31. Ay, By, Cay Cuo, and Dy, with h(z) = x, imply
(4:6).

Proof.—Let ¢q, gq, f . have the same meanings as in the proof
of Theorem 30. By Da,, hm ¢ =0 on K, and by C, the

functions ¢ are uniformly bounded By the method used in
proving Theorem 28 we are led to (4:8) and, by Theorem 28
itself, to (4:9).

The following example shows that in Theorems 30 and 31
the condition that the function 6 is independent of o cannot be
omitted. Let P; be a partition of the interval [a, b] into 2
equal intervals, and let the intervals be numbered in order from
left to right. Let o, as well as n and k, range over the positive
integers, and let

¥no(z) = 6,(x) = 1 for x on the odd-numbered intervals of P,,
= —1 for z on the even-numbered intervals of P,,

Let guo(z) = [ 6(z) dz, fo(2)=0. Then [ o dgso = [ 8.0 dx

and, when ¢ = k, this equals b — a.

When the functions gi(z), f(z), gw(z), fo(x) are absolutely
continuous, we may apply the Corollary of Theorem 20 to
obtain from the preceding some interesting theorems on the
convergence of sequences of Lebesgue integrals. For example,
the ‘“general convergence theorem” of Hobson ([2], Vol. 2, page
422) follows from Theorem 30, if we take h(z) = Kx. A theorem
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useful in existence proofs in the calculus of variations is obtained
from Theorem 28.("

When the formula for integration by parts of Theorem 8 holds
and

lim [Ya(b)ge(b) — ¥a(a)gr(a)] = 6(b)f(b) — 6(a)f(a),

ne= o
k= o

we obtain at once from each of the Theorems 22 to 28 a theorem
concerning the validity of

lim [,b gedgn = [ fads.

na== o
k= «

A corresponding statement may be made for Theorems 29 to 31.
Moreover, the remark of the preceding paragraph may again be
applied to give some interesting results.

*There is a type of convergence for functions of bounded
variation which is still weaker than B, and which is analogous to
convergence in the mean for L-integrable functions. It is
defined as follows:

Bo. lim gi(a@) = f(a); lim gx(h) = [(b); lim [ “gdz = j “fde
k k k Je @

for each point ¢ on [a, b).

By may replace B, in Theorems 22, 23, 27, and 28, and a
corresponding By, may replace BB, in Theorems 29 to 31, as
will be shown following the proof of Theorem 34. That the
convergence of ¢gr to f in these theorems cannot be further
weakened is shown by the following proposition.

*THEOREM 32. If lim gi(a) = f(a), and

lim L”odgk = Lbadf

for every continuous function 0, then By holds.
To prove this, it is sufficient to take 8(z) = 1 on [a, b], and
then to take

0(x)

I

(z —a)/(c—a) on [a, c],
1 on [e, b,
and integrate by parts.

t Graves, ‘‘On the Existence of the Absolute Minimum in Space Problems
of the Calculus of Variations,” Annals of Mathematics, Vol. 28 (1927), p. 162.
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That A, and B, may hold while g; does not approach f at any
point except a and b is shown by the following simple example.
Let gi(z) = —1 on the open interval (¢, di), and gi(z) = 0 else-
where on [a, b]. Let the interval (c, dx) wander over [a, b]in suit-
able fashion, and let (di — ¢i) tend to zero but not too rapidly.

The following theorem on the compactness of a sct of functions
of uniformly bounded variation will be useful in studying the
relationship between the two types of convergence, B, and B,.

*Tueorem 33. If the functions gi(z) are bounded and of
bounded variation uniformly in k, then there cxist a subsequence
(gr) and a function f(x) such that im g, (x) = f(x) everywhere on

q
[a, b]. Moreover t(f) £ lim inf {(gx,).

¢=w

Proof.—We suppose at first that cach g.(x) is nondecreasing.
Let E be a denumerable set which is dense on [a, b] and includes
the end points ¢ and b. By the “diagonal method” used in the
proof of Ascoli’s theorem (Theorem 28 of Chap. VII), we find
a subsequence (gx,) which converges at the points of £ to a
nondecreasing function f(x) which is at first defined only on .
But at each point of cE, f(x) has a left-hand limit fi(x) and a
right-hand limit f,(x). Wherever in cZ fi(x) = f,(x), we sct f(x)
equal to this common value. The remaining points where f(x) is
still undefined form a denumerable set, and we may select another
subsequence, for which we use the same notation (gx), and
which converges at these points also.  We may prove that g, (x)
converges to f(r) at the points where fi(r) = f.(z) as follows.
Choose a point z in E such that z < zand f(x) = f(z) < f(x) + e
Then for ¢ sufficiently large we have

gr, () = gr(2) < f(x) + e

Similarly we show that gi,(x) > f(x) — e. The result obtained
for nondecreasing functions extends at once to the general case
by the usual device. The last statement in the theorem follows
from the fact that for each partition P of [a, b],

Y laf] = lim ) |ags] < Tim inf t(gs,).
P ¢ r !

The next theorem gives the relations between the two types of
convergence B, and B,.
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*THEOREM 34. A, and B, imply Bo. A, and B, imply that B,
holds on a subsequence.

Proof.—The first statement follows from Theorems 22 and 32,
It could also be proved by another method. For the second
statement, we secure a subsequence (gx,) approaching a function
fi(z) on [a, b], by Theorem 33, but fi(z) may differ from the
function f(z) given in Bo. However, (gx,) and f, also satisfy B,,
by the first part of the theorem, so /a ¢ f(x) dz = /; ° fu(z) d=z
for every point ¢ on [a, b]. Hence f(z) = fi(x) except possibly
at their points of discontinuity.

We can now readily verify the statement made above that
B, may replace B; in Theorems 22, 23, 27, and 28. For, if (4:1)
does not hold, there are sequences (n,) and (k,) such that

(4:10) tim [ yu, dgs,

exists but is different from /; ) df. By Theorem 34, B; holds

for a subsequence of (g;,). But on this subsequence the value of
b

(4:10) must be ,/; 6 df, which is a contradiction. A similar

device in connection with the proofs of Theorems 29 to 31 shows
that these theorems may also be extended.

It is interesting to note that Theorems 22, 23, 27, and 28
with By in place of I3; could have been proved directly, by
approximating the functions ¥, by polygonal functions and
integrating by parts.

*5. Linear Continuous Operatorson the Space C.—Inpreceding
sections we have noted that the S-, GS-, and LS-integrals are
bilinear operators, and in particular that (S) [y df is defined for
every ¢ in the space € of functions continuous on the interval
[a, b] if and only if f is of bounded variation on [a, b]. In this
section there is given a proof of the theorem of F. Riesz which
states that every linear continuous operator on the space € is
expressible as a Stieltjes integral.V

We recall that in the space €, the norm ||¢| = lLu.b. |[¢(z)| on
[a, b]. Continuity of a real-valued operator L with domain €
is defined in terms of this norm in the usual way. An operator L
is said to be modular in case there is a constant u such that

1 See Riesz, Annales scientifiques de I'école normale supérieure, Vol. 31
(1914), pp. 9-14.
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[LW)| = pll¢|l for every ¢ in . It is obvious that a linear
modular operator L is continuous. Conversely, if a linear
operator L is continuous at ¢ = 0, it is modular. For, suppose
|IL(¥)| < 1 whenever ||¢|| £ 5. Then

ot = e (2) 4 <L
for every .

For a linear operator L we set ||L|| = Lu.b. [L(¥)| for |¢| = 1.
In case ||L| is finite, L is modular. A positive linear operator L
is always modular, with ||[L|] = L(1), as is easily verified. The
following theorem gives a decomposition of linear modular oper-
ators corresponding to that for functions of bounded variation.

TreoreM 35. If L is linear and modular, there exist unique
positive linear operators K, N, M, with the properties:

1. L=K — N,

2. M=K+N,

3. If L = Q@ — R, where Q and R are linear and positive, then
Q — K and R — N are positive.

Moreover, |L|| = M| = |K[ + [IN].

Proof —1f y(z) = 0, we set

K@) = Lu.b. L() for 0=<6=y.
Then it is plain that, if ¢y = 0, @ = 0, we have

(5:1) 0= K(ay) =aKQ{¥p) < .
Also if ¥; 2 0, y2 = 0, we have
(5:2) K + ¢2) = K1) + K(¥a).

FO]‘, when 0 é 0, § !//1, 0 § 6. § ¢2,L(01) + L(eg) = L(91 -+ 02)
< K(¥1 + ¢¥2), and hence K(¥1) + K(¥2) < K(¥1 + ¢2). On
the other hand, if 0 60 S ¢1 4+ ¢z, set 6 = (0 — ¢¥2) V O,
02=0/\¢2. Then01+02=0,0§_01,S_¢1,0§02§¢2,and
so L(6:) = K(y1), L(6:) = K(¥2), L(6) = K(¥1) + K(¢s), and
finally K1 + ¢2) < K1) + K(¥2).

Every continuous function ¢ has infinitely many representa-
tions in the form ¢ = ¢y, — ¥», where ¥, 2 0, ¥2 = 0. But
from (5:2) it follows at once that the formula K(¥) = K1)
— K(¥2) defines K as a single-valued operator on €, and from
(5:2) and (5:1) it follows that K is linear and positive. Then
N=K—-L and M =K + N are also linear and positive.
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Property (3) follows immediately from the definitions of K and
N, and the three properties together uniquely determine K, N,
and M. We note that for ¢ = 0, we have

M) =lub.L(6) for —y¢=<05y,

since M () = K(2¢) — L(y). Hence |[M| = M(1) < ||L|. But
ILI = K| + N[ = K1) + N(1) = M(1) = |[M].

We shall need to extend the domain of definition of the linear
operator L. 1t will be sufficient to consider a positive operator
K. If (¢.) is a bounded nondecreasing sequence of continuous
functions, it has a limit 6, which may, however, be discontinuous.
The sequence (K(¥.)) is also nondecreasing and bounded and
so has a limit which we denote by K(6). From the following
lemma we see that this definition of K () is consistent and yields
a single-valued operator.

Lemmad. Let (Y1,) and (Y2,) be nondecreasing bounded sequences
in the space €, such that hm VYin = hm Von. Let K be a positive

linear operator. Then hm K (Y1a) = hm K(2,).
Proof—Suppose lim ¢1n =0, w hcre 6 is continuous, and set
VYan = Yin A 0. Thernl lim ¢¥3, = 8, and in this case the conver-
gence is uniform, by Therz)rcm 26 of Chap. VII. Hence lim K(Ys,)
= K(6). But K({¥:.) = K@s.), and so hm K(‘p.,,) K(6).

But 0 may be taken as an arbitrary one of the functions ¥ym.

Let D, denote the class of all limits of bounded nondecreasing
sequences (¥,) chosen from €. The enlarged domain D of the
operators L, K, N, and 1 is to consist of all functions 6 expressible
as the difference of two functions chosen from ®,. It is easily
seen that D is linear.

THEOREM 36. The operators K, N, L, and M may have their
domain of definition extended to the space D in such a way that
they remain linear, have lthe same modulus on © as on §, and
continue lo satisfy the relations (1) and (2) of Theorem 35, and K,
N, and M remain positive on D.

Proof—1f @ = 6, — 0, where 6, and 6 are limits of nondecreas-
ing sequences, set K(6) = K(8,) — K(62), N(8) = N(6,) — N(62),
L(6) = K(6) — N(8), M(8) = K(§) + N(8). If 6, and 6, are
limits of nondecreasing sequences, it is readily verified that
K(6, + 6,) = K(6,) + K(8s), and hence that K(6) is a single-
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valued positive linear operator on ®. Since K is positive, we
still have | K| = K(1).
THEOREM 37. Riesz’ Theorem. If L is a linear continuous

operator on the space €, there is a function f of bounded variation
such that

L) = [Tvd, Ll = up.

Proof —By virtue of the preceding results, we may restrict
attention to a positive operator K. Let

Oy(x) =1 foraz=y, a<ysh
=0 fory<az =,
6.(x) =0 fora =z =0,

fly) = K(6,).

If P is a partition of [a, b] by points y,, and ¢ is continuous,

SP;¥, ) = ), WEUw) — fy-»)
= K[ ) 4@, - 0,))],

and this expression approaches K(¢) when the norm N(P) tends
to zero, since then Z ¥(2)[0,,(z) — 6,,_,(x)] approaches ¢(r)
uniformly on [a, b]. The function f is nondecreasing, and f(a)
=0, f(b) = K(1) = ||K||. The equation ||L|| = i(f) for the
general case follows with the help of the Corollary of Theorem 16.

*6. Remarks on Improper, Multiple, and Repeated Stieltjes
Integrals.—The case when the function f is of bounded variation
on every closed subinterval of the open interval (a, b), but is
not of bounded variation on (a, b), and the case when the interval
of integration is infinite may be handled by the methods of
elementary calculus for improper integrals, or by the methods of
Sec. 5 in Chap. XI.

Multiple and repeated Stieltjes integrals of various types have
been considered by a number of writers. In defining

6:1) [i 4@, v) dafz, v),

where I is an interval of the zy-plane, the increment of f over an
interval ¢ = (aq, ¢; b, d) is taken to be

Alfy ) = f(b, d) — f(b, ¢) — fla, @) + [(a, ©),



296 THE STIELTJES INTEGRAL [Crar. XII

as in Sec. 13 of Chap. XI. A function f(z, ¥) may be of bounded
variation in the sense that 2 |A(f; 2)| is bounded for all partitions

of the fundamental interval, without being of bounded variation
in either variable separately. When f is of bounded variation,
(6:1) is a linear continuous functional on the space of continuous
functions defined on I. The converse theorem of Riesz, given
in the preceding section for functions of one variable, extends
to the case of functions of two or more variables.(V

Types of repeated Stieltjes integrals are

(6:2) JU¥(z, y) dg(x)) dyh(y),
(6:3) [o(x) dof¥(z, y) dh(y),
(6:4) Jo(z) d[¥(y) dyf(z, y).

The general form for a bilinear continuous functional on the
space of continuous functions is given by (6:4), where the func-
tion f is of bounded variation in a modified sense.®

When f(z, y) = g(z)h(y) where g and h are of bounded varia-
tion, Fubini’s theorem shows the equality of (6:1) and (6:2) as
LS-integrals, as was indicated in Chap. XI, Sece. 2. (See also
Saks, Theory of the Integral, page 77.) A Fubini theorem for
(6:4) was given by Cameron and Martin.®®
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CHAPTER XIII

THE THEORY OF SETS AND
TRANSFINITE NUMBERS

1. Introduction.—In this chapter we shall develop the theory
of classes somewhat more extensively than was done in Chap. I
and shall include a discussion of various propositions equivalent
to the axiom of choice. The reader is expected to be familiar
with the ideas and notations of Chap. I. A somewhat different
notation for the algebra of classes will be introduced in this chap-
ter. It is important for the student to become familiar with
both schemes of notation, since both are used extensively in the
mathematical literature. On the other hand, we shall continue
to use the notations of the previous chapters for the logical con-
nectives and quantifiers.

2. The Algebra of Sets.—The fundamental relation in the
theory of classes is the relation of class membership. This is
denoted by “z e A”"—read “z is & member of A,” or “z is an
element of A.” It is taken as an undefined relation and is
understood in the usual sense. Its negation is denoted by
“zeé A)'—read “z is not a member of A.”” We define class
inclusion as follows:

ACB:=:2¢A D zeB.

The symbol “A C B” is read “A is a subclass of B” We
understand A = B to mean that the classes A and B have the
same elements. Thus we may arrive at the same class by many
different processes of specifying its elements. In practice, we
usually show that A = B by showing 4 C Band BC A. An
example of this is the proof in elementary analytic geometry
that when 0 < b < @, ¢? = a? — b? then

2t/at + /bt = 1

is the equation of the locus of all points in the zy-plane the sum

of whose distances from (¢, 0) and (—c, 0) is 2a. The set 4 is
297
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said to be a proper subset of B in case A C B and A = B.

This relation is sometimes indicated by the notation A4 g B.
It is clearly equivalent to the statement

zeA -D-zeB:3yeBs-yé A.

For an example we may take A as the set of points in the zy-plane
given by
z = cos t, y=3cost, (0<t<m),

and B as the set of points satisfying y = 3.

A subset of a class B is frequently specified by means of a
property P applicable to the members of B. The following forms
are frequently used to denote the subset of B whose members
have property P (for examples, see Chap. 111, page 41):

Elx ¢ B . x has property P],
Bz has property P],

[z € Blz has property P},
[z|x has property P].

We recall that the class whose only member is @ is usually denoted
by {a}.

The union (or sum) of two classes A and B will now be denoted
by AU B, and the intersection (or product) will now be denoted
by A M B. When subclasses of an algebraic system R are being
considered, this notation helps to avoid confusion between these
operations of the algebra of sets and the operations denoted by
“4 and “ X" in the system . We shall frequently find it
convenient to use the symbol “J” for an “index class” of
clements 2. If W is a fixed class, and A, C W for 7 eJ, then

UAd, =lallze Ws:3ied sz e 4,

teJ

NA, =[allzeWsriied D ze Al

veJ
These are the natural extensions of the notions of union and inter-
section to the case of an arbitrary collection of subclasses of a
fixed class. -

With respect to a fixed “‘universal” class IV, the complement

cA of a subset A of W is defined by

cA =[xz eWlz € Al
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The difference A — B of two subsets of W may then be defined
by the formula A — B = A N ¢B. We note that this notation
for the logical difference does not avoid the confusion with alge-
braic subtraction, but it is commonly used because of its conven-

ience. Similarly, the symbols ““+” and ) ” used in Chap. I

for the union of sets are often more convenient than ‘“U”.
(Compare, for example, Kuratowski [4].)

We recall that in order to be able always to have a meaning for
the intersection and the difference of classes, it is necessary to
introduce the null class, which is denoted by A, or by 0, or some-
times by ¢. Two sets A and B are termed disjoint in case their
intersection is the null class, .., A N\ B = 0.

The distributive laws in terms of the symbols “\J’" and “N\”’
read as follows:

2:1) AUBINC=UANCUBNCO),
(2:2) AUVUBNC)=(AIUBNAYCO).

The set in (2:1) is always a subset of the set in (2:2), but examples
are readily constructed to show that the two are not always equal.
When C is replaced by its complement in (2:1) and (2:2), we
obtain
AUB)—-C=A4A-C)JUB-0),
AUB—-C)=(AUYUB) —(C - A).

The following laws of de Morgan relating to complements of
unions and intersections are useful:
c(\JA,) = NcA,,
i i
c(NA:) = UcA,.
3 1

(Compare formulas (3:8) and (3:9) of Chap. I, page 10.)
We retain the notation A X B for the Cartesian product of the
classes A and B, which is defined by the formula

AXB=1[(zylzeA.yeB]

It is clear that when A # B, A X B # B X A, although there
is an obvious one-to-one correspondence between these classes.
A similar remark may be made regarding A X (B X C) and
(A X B) X C. The consideration of Cartesian products of
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arbitrary collections of sets will be postponed to a later section.
The Cartesian produect is distributive with respect to both unions
and intersections, 7.e.,

A X (VB.') = U(A X By),
A X (NBi) = MN(A X B)).

There are similar formulas with the order interchanged.

The set P(A) = [all B C A] will be very frequently useful.
It is called the power set of A, for a reason that will become clear
later. Note that both A and the null set arc membersof P(4).
Thus when A is empty, B(A) has just one member. f

3. Relations and Functions.—We recall that if A and B are!
classes, a binary relation R on AB is defined as a subset of the
Cartesian product A X B. We may write “2Ry” as an abbre-
viation for “(z, y) in R.”” The relation R may also be referred
to as a function f (possibly multiple-valued), and the notation
y e f(x) may then be used (y = f(z) when f is a single-valued
function). We continue to use the notation ‘“fA4,” for the set

[yeB|dz e A15 y e f(z)] = If(x) for x e Ay,

where A; C A. Theset Ay = [z e A|f(x) # ¢] is the domain of
f, and By = fA is the range of f. A function on 4 to B, i.e., a
single-valued function f whose domain is A and whose range is a
subset of B is sometimes called a transformation or a mapping
of A into B. When the range of fis the whole of B, i.e., fA = B,
such a function is said to map A4 onto B.

If f is a function on A to B, and g is a function on B to C, the
composite function ¢ o f satisfics the condition (g o f)4, = ¢g(f41)
for every subset A, of A. The same condition holds when f and
g are multiple-valued functions. In terms of the notation for
relations, (replacing f by R and g by S) we have:

(z,2)e RoS:~:3yeBs (x,y)eR.(y, 2) 8.
When no confusion can arise, we may write simply gf in place of
geof. Note that our notation reverses the order of writing the
composite when the function notation is replaced by the notation
for relations.

A frequently useful class consists of all mappings of a given set
J into another set W. 1t is denoted by W7, for a reason that will
be clear when we consider exponentiation of cardinal numbers.

—
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It is a subclass of the power set P(J X W). When J is the null
class, J X W is also null, but B(J X W) has one element, namely,
the null class, which satisfies the condition of single-valuedness,
so it is an element of W7. Thus WY has one member when J is
null. However, if W is null and J is not, then W7 is null. Note
that when J; M J;is null, there is a natural isomorphism between
Wi and WYt X WY, which is consistent with the requirement
that when J is null, W1 has exactly one element.

The notion of characteristic function of a subset A of W is a
useful one. It is a mapping ¢4 of W into the set 2 consisting of
the integers 0 and 1, such that

Yalz) =1 forze A,
Yalx) =0 forze W — A.

Thus each ¥, is an element of 2¥. This determines a mapping
v of B(W) onto 2%, which is readily seen to be one-to-one.
Hence we may use the notations P(W) and 2% interchangeably.

If A; C W for each ¢ in the index set J (i.e., (4,) is a mapping
of J into the power set P(W)), the general Cartesian product

H A; is defined to be the subset of WY consisting of all those
te
mappings (x,) such that x, ¢ A;forallieJ. When one 4;is null,

then H A, is null. We shall see later that the assumption that

whenever every A, is nonnull, then ﬂ A; is also nonnull is equiv-

alent to the axiom of choice.

Since a relation R on AB is merely a subset of A X B, we have
an obvious meaning for By C R, Ri M Ry, and B, \U R,. If
Ao C A4, then (4, X B) N\ R is a relation R|A4, which is called
the restriction of R to Ao. When R determines a single-valued
function f mapping A into B, we use the corresponding notation
fl4, for the restriction of f to Ao. If A = B, and I is the iden-
tity map, then /|4, is sometimes called the inclusion mapping of
Aginto A. We note that fld, = fo I|A,.

Let JoCJ, X =[] 4, Y =[] 4, and let £ = (z;) denote
teJ teo
a member of X. Then §J; is a member of ¥. The projection
Py of X onto Y is defined by Py(£) = £Jo. The coordinates x;
of £ are obtained as special cases by taking Jo, = {}.



302 SETS AND TRANSFINITE NUMBERS  [Cuar. XIIT

Let ¢ denote the natural mapping of 4 X B onto B X 4,
which carries the pair (z, y) into (y, ). If R is a relation from
A to B, set B! = tR. We note that when R determines a
one-to-one mapping, R~! gives the inverse mapping.

A relation R on A A (also called a relation on A) is said to be:
(a) symmetric in case R C R~ (hence R = R™Y);
(b) reflexive in case I C R, where I is the identity relation;

(¢) transitive in case Ro R C R;

(d) antisymmetric in case R N\ R~ C I;

(e) antireflexive in case RN I = 0;

(f) exhaustive in case R\JU R-!U I = 4 X A.

In applying these definitions it is frequently desirable to trans-
late them. Thus (a) means

alb-D- bRa.

For an arbitrary relation R on A, it is obvious that B\J I is
reflexive, and R — I is antireflexive. If R is symmetric (or
antisymmetric), this property still holds for R\J I and B — 1.
If R is transitive, R \J I is still transitive, but B — I may fail
to be so. However, R — I is surely transitive if R is transitive
and antisymmetric.

Every relation R on A has an extension T'r which is transitive,
This extension Ty is defined as the intersection of all transitive
relations § D K. Such transitive relations S exist since the
universal relation U = 4 X A is transitive, and T'g is transitive
since the intersection of transitive relations is transitive. In
case R is symmetric, T is also symmetric, since, if S is transitive
and S D R, then S—! is transitive and S~! D R, and so R C
8 M 8-, which is symmetric. Obviously, when R is reflexive,
Tr is also reflexive. But Tr may be reflexive and symmetric
when R is antireflexive and antisymmetric. For example, let
A=1{a, b c}, R={( b), b ¢), (¢, a)}. Then Tp=U =
A X A.

When we are using the function notation “y e f(z)” or “y =
f(z)”” in place of “zRy,” we may replace “zTry” by “y € hy(x).”
The definition of hs(x) may be phrased directly as follows: Let
a subclass B of A be called hereditary for f in case y ¢ B - D" f(y)
C B, i.e., f(B) C B. Then hy(z) is the intersection of all hered-
itary subclasses of A containing f(x). To show that when h, is
thus defined, zTgy -~-y ¢ hy(x), we may proceed as follows:
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Let S8 = [(u,v)| v ehy(u)]. Then R C 8 since f(u) C hy(u), and
8§ is transitive since v € hy(u) and w € hy(v) imply w ¢ hy(w). Hence
z2Try implies y € hy(x). For the converse, let S be a transitive
relation containing R, and set g(x) = [¢|(x, 2) ¢ S]. Then g(z) is
hereditary for f and contains f(x) = [2| (z, 2) ¢ R]. Thusyeh,(z)
implies (z, y) € S for every transitive S containing R, and hence
(xy y) € Tp.

An equivalence relation R is one that is symmetrie, reflexive,
and transitive. Important examples of equivalence relations
appeared in Chap. II. An equivalence relation determines a
partition @ of A into mutually exclusive subclasses, such that
every pair of elements of a subclass belongs to B. To each
element z of A corresponds the subclass E, = [y| zRy). A parti-
tion @ is obviously a subclass of the power set B(A4). Con-
versely, to each such partition Q corresponds an equivalence rela-
tion B. TFor convenience let the clements of @ be B;, where ¢

ranges over an index classJ. Then B = \UB; X B;. 1Itis easily
1ed

seen also that the correspondence between equivalence relations
R and partitions @ is one-to-one.

EXERCISES

1. Let W denote the set of all positive integers, A the subset
consisting of the even integers, B the subsct consisting of the odd
integers, and C the subset consisting of the multiples of three.
Describe the sets A N C, BN ¢C, B\U C.

2. Verify the relation AN (BUYUC) = (ANBUANC)
for the sets described in Exercise 1.

3. For arbitrary sets A, B, C, prove that (A N B)UC =
AN (BVUCQC)if and only if C C 4.

4. Show that a relation R on A which is symmetric and tran-
sitive and satisfies the additional condition

zeA D Jyeds(z,y)eR
is also reflexive.

5. If A is a finite class containing n elements, how many
elements has the power set B(A4)?

6. Let n be a positive integer and A be the set of all integers.
Define zRy to mean that n divides z — y. Show that R is an
equivalence relation, and determine the number of equivalence
classes.
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7. Let R be a relation on AB, S a relation on BC, and T a
relation on CD. Prove the associative law

(Re8)oT =Ro(SoT).

8. Discuss the properties (a) to (f) listed on page 302 for each
of the following relations: (i) brother, (ii) sibling, (iii) friend,
(iv) parent, (v) ancestor, (vi) inclusion (between sets), (vii)
greater than (for numbers), (viii) zRy means y > z? + 1, where
z and y are real.

9. Let A = B = [all positive integers],

R = [all (z, ¥)| y/x is an odd integer > 1],
S = [all (z, ¥)| y/x is an even integer].
Show that Ro S = So R.
10. Let A = B = [all real numbers],
R = [all (z, y)|x? + 4y® = 4].
Determine the domain and the range of the corresponding func-
tion y = f(x).

11. Let f(x) = sin~'z, g(z) = (x? — 4z?)’. Determine the
domain and range of f, g, and ¢ o f, assuming that all the variables
are real. Show that g o f is single-valued.

12, Let A = B = [all real numbers],

R = [all (z, y)|y = 2?].
Determine the extension 7'z of R to be transitive.

13. Show that if R is a relation on AB, and S is a relation on
BC, the composite relation R o 8 is the projection on A X (' of
(BXC)N (A XS).

14. Let A = B = [all real numbers],

R=[al(z,)|5sz+1<sysz+2.y =10
Show that T = [all (z, »)|5 Sz +1 =y = 10].

4, Partial Ordering.—A relation R on A is called a partial
ordering of A in case it is transitive and antisymmetric. As was
noticed above, we may also require R to be reflexive or anti-
reflexive, as is convenient. (A special case is the passage from
< to = and vice versa, in the ordering of the real numbers.) If
the relation R is merely transitive, it is still sometimes called a
partial ordering. There are then always a partition @ of A and
a relation S on @ which is transitive and antisymmetric, deter-
mined by the relation R as follows. We assume that R is reflex-
ive. Then Ry = RN R~' is an equivalence relation on A,
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which determines the partition Q. The relation S on @ is defined
as follows:

BiSB; :=:3z,¢ B, . 32; € By >* 2, Rxs.

A simple example of the process is the following: A is the union
of two disjoint classes B; and B,, while R = (B; X B;) U
(By X By) U (Bs X By). Then Q has only two members, B,
and B,, and 8 has the three members, (B,, By), (B1, Bz), (Bz, Ba).

A partial ordering which is exhaustive is called a simple order-
ing or a linear ordering. Simple orderings were considered in
Chap. II. 1In case a set 4 is partially ordered by R, and a sub-
set B of A is simply ordered by R, we shall call B a chain, for
convenience. For an arbitrary set A the power set P(A) is
partially ordered by inclusion, but is not simply ordered by this
relation when A has more than one element.

Let us assume that the partial ordering R of 4 is reflexive.
Then a member ¢ of A4 is called an upper bound of a subset B of
A incasez ¢ B-D- zRc, and ¢ is called a lower bound of B in case
zeB-D-cRx. The element c is called the least upper bound of
B in case it is an upper bound and is a lower bound for the class
of all upper bounds of B. The uniqueness of the least upper
bound, when it exists, follows at once from the requirement that
R be reflexive, antisymmetric, and transitive. The greatest
lower bound is defined in a corresponding way. These definitions
are extensions of those given in Chap. II for linearly ordered sets.
The notations ‘l.u.b. B’ and “sup B’ are in common use for the
least upper bound, and “gl.b. B” and ‘“‘inf B” are used for the
greatest lower bound. Note that the lu.b. (g.l.b.) of the null
subset of 4 is the g.l.b. (l.u.b.) of A when existent.

In case every subset of A consisting of two elements has a
least upper bound and a greatest lower bound, then the partially
ordered sct A is called a lattice. Clearly every simply ordered
set is a lattice. A lattice is called complete in case every subset
has a least upper bound and a greatest lower bound. The power
set P(A4) of an arbitrary set A, when ordered by the inclusion
relation, is an important example of a complete lattice. When A
is the three-dimensional Euclidean space, the subclass @ of B(A)
consisting of the points, lines, and planes in A together with 4
itself and the null set is also a complete lattice. However, Q is
not a sublatiice of P(A), since Lu.b. F when F is a subset of @ is
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usually not the same as l.u.b. F when F is regarded as a subset of
P(4). For example, let F consist of two distinct points z and y.
Then in @, Lu.b. F is the line joining z and y, while in P(4),
Lu.b. F is the set {z, y}. When F consists of two distinct planes,
g.l.b. F may be either a line or the null set. This inhomogeneity
is removed when the points, lines, and plane ““at infinity’” are
adjoined to @ to form the projective space P.

If A is simply ordered by R, and every nonnull subset B of A
has a greatest lower bound belonging to B, i.e., B has a first
element, then A is said to be well-ordered. Such systems are
basic for the theory of ordinal numbers, which is discussed in the
next section. ;

EXERCISES \

1. In the lattice @ described above, determine l.u.b. F and
g.Lb. I in each of the following cases:

(a) F consists of a line I and a point p not on I;

(b) F consists of two intersecting lines I; and lq;

(¢) F consists of all the lines through a fixed point p.

2. In the usual ordering, each of the following sets is simply
ordered, and so is a lattice. Which ones are complete? Which
are well-ordered?

A = [the positive integers].

B = [the integers greater than 5, and + «].

C = [the rational numbers].

D = [the real numbers and + «© and — «].

3. In cach of the following cases, tell whether R is an equiv-
alence relation, a partial ordering, or neither. Also tell whether
(4, R) is a lattice, and if so, whether it is complete.

(@) A is the set of lines in the Euclidean plane, and R is the
relation of parallelism.

(b) A is the set of lines in the plane, and £ is the relation of
perpendicularity.

(¢) A is the set of positive integers, and xRy means ‘‘z
divides y.”

(d) A = B X B, where B is the set of positive integers, and
(a, b)R(c, d) means ad = be.

(e) A is the unit square 0 £ 2 £ 1,0 £ y £ 1, in the Carte-
sian plane, and (z1, y1) R(z2, y2) means z; < 2, Y1 < Y.
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(f) A consists of the vertices, edges, and faces of a cube in
three-space, and R is the relation of point-set inclusion. In this
example, what can be adjoined to A to make it a lattice?

4. Let (4, R) be a complete lattice, and let f map A4 into 4,
preserving order.  Prove that there is at least one fixed element
of A under the transformation f.

5. Let f be a single-valued function mapping A into B. Prove
that :

(@) (DN E) = (fD) N\ (fE) for all D and E contained in A
if and only if f~! is single-valued;

(b) f(A — D) C B —fDforall DC A if and only if f~! is
single-valued;

() (A — D) D DB — fDforall D C Aif and only if fA = B.

6. Show that for subelasses D and K of 4,

ll/u\l/E = ‘l/(uﬁlﬁ),
Yo + ¥ = Yowur + Yonn,

where ¢;, denotes the characteristic funetion of 1.
7. Let D x E denote the symmetrie difference

Dsld = (D — K)\J F — D).

(‘onsider the values of the characteristic functions ¢, to be in the
system of residue classes of integers modulo 2, so that 1 + 1 = 0.
With this agreement, show that

\l/h + \I/f = \l’(n*n)-

8. From LExercise 7 and the first part of Exercise 6, show that
the system (B(4), *, M) coustitutes a commutative ring. What
are the units for = and for M?

9. Show that the following subclasses of the lattice B (4 X ),
ordered by inclusion, form complete lattices:

(a) The class © of all symmetric relations on .A;

(b) 'The class R of all reflexive relations on A;

(¢} The class 3; of all transitive relations on A4;

(d) The class € of all equivalence relations on 4.

Note that the least upper bound in T (or €) of a subclass
of T (or €) is not always the same as its least upper bound in
PB(A X A). Show this by examples.
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6. Ordinal and Cardinal Numbers.—Two classes A and B are
said to have the same cardinal number (or to be similar) in case
there is a one-to-one correspondence between 4 and B. If 4
and B are simply ordered by relations R and S, respectively, they
are said to have the same order type (or to be ordinally similar)
in case there exists a one-to-one mapping f of 4 onto B such that
a1Ras - D f(a)Sf(az). TIf, in addition, A and B are well-ordered
by R and 8, respectively, then A and B are said to have the same
ordinal number.

The preceding definitions are adequate for the operations we
actually perform in mathematics. However, we naturally prefer
that a noun such as “number " should refer to a definite entity.
If we are dealing with subsets of a fixed set M and .1 C M, the
cardinal of A, denoted by card A or by A, may be defined as the
class of all subsets of A which are similar to A. We may also
define the ordinal of a well-ordered subset A of A/, denoted by
ord A, or by 4, as the class of all well-ordered subsets of M which
are ordinally similar to 4. (No ordering of M is presupposed.)
This choice of definitions has the drawback that the cardinal of
A is an entity which is not determined by A alone but rather
depends also on another set /. If we try defining the cardinal
of A as the collection of all sets which are similar to A (compare
Whitehead and Russell [8], Vol. 1, especially pages 331, 347),
we soon sce that such a definition does not vield a suitable object
of thought. For if we let a denote the cardinal of A thus defined,
and set B = [(x, a)|x ¢ ], we sce at once that B is similar to A.
But. B cannot be a member of a if we agree that the members of
a must be known entities prior to the formation of the class a
having these members.

If we disregard the preceding objection, we run into contra-
dictions. For example, let S denote the class composed of all
classes having just one element, 7.e., 8 is the cardinal usually
denoted by “1.” Let T be the subclass of S consisting of thosc
elements * = {a} such that z ¢ «, 7.e., £ is not a member of a.
Let y = {T}. Then yeS, and if y e T, we must have ye 7,
while if 5 €7, we must have y ¢ 7. Whitchead and Russell avoid
this contradiction by use of the theory of types. For example,
the cardinal 1 is the class of all unit classes of a given type. Then
the class {1} is a unit class of a higher type. So we again have
the situation where similar classes have different cardinals.
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These unsatisfactory aspects of this matter can be avoided by
selecting one definite class to represent each cardinal number and
one definite well-ordered class to represent each ordinal number.
It will naturally be convenient to refer to these representations
themselves as cardinals and ordinals. In the next section we
shall exhibit a simple way in which this selection may be made,
first for ordinals, and then for cardinals. The proposition that
every cardinal has a representation of this kind is equivalent to
the axiom of choice. This relationship will be taken up in Sec. 10.

Before we proceed to this selection, we shall derive some sim-
ple consequences of the preceding definition of cardinal number
in terms of subclasses of a fixed class /.  Since we suppose in the
following paragraphs that the classes are all subclasses of M, we
may omit further mention of M. An order relation is defined
between cardinal numbers by saying that card A < card B in
case A is similar to a subset of B, i.e.,

(5:1) A<B-=3B,CBs>4A=8B.

This relation is clearly transitive and reflexive. To show that it
is antisymmetrie, we have the following important result, known
as the Schréder-Bernstein theorem, or sometimes simply as the
Bernstein theorem.

TuroreM 1. Let f be a one-lo-one mapping of A into B, and
let g be a one-lo-one mapping of B into A.  Then f and g determine
a one-to-one mapping F of A onto B.

Proof —Let A’ = A —gB, A =[4" C A| A" C A" .gfA"
C A”]. Obviously 4 €, so A is not null. The intersection
A, of all the members of % clearly belongs to ¥, and also

(5:2) Ay = A"\ gfA4,,

since A’ \J gf4, C 4,, and gf(A"\J gfd,) C gfA,, s0 A"\U gfA,
isamemberof A. Nowlet Ag = A — 4,, B, =f4,,B; =B —
By,. Then by (5:2), A1 = A'UgBi=(A —gB)UgB1 =4
— gB,, 50 Ay = gB.. Hence we may set F(z) = f(x) on A,, and
F(z) = g'(z) on A,

We note that A, is the union of the sequence of sets 4’, gf4’,
(gf):A’, . . ., i.e., A;is the least subclass of .4 which contains
A’ and is hereditary for the composite function gf in the sense
of Sec. 3. In the special case when A and B are real intervals,



