
BBC & EDUCATION

A fundamental constant
Boris Allan presents a program to calculate the value of e

‘he exponential, e, the base of natural
logarithms, is a fundamental constant

in mathematics. e appears in many guises,
especially in calculus, and has a very
simple definition:
eH 141+ 1/214 Val 14! + 1/51 +
and onwards. In English, this means that e
is the sum of 1 plus the reciprocal of the
factorial of 1, plus the reciprocal of the
factorial of 2, plus the reciprocal of the
factorial of 3, and so forth, The factorial of,
say,4is4x3x2x2x 1 andsoitis
simple to realise that 4! = 4 x 3!

Rewriting the expansion for e, we can
produce:
2 = 1+ t(1) +12) +113) + 14) +5) +
where, in general, t(n) = t(n — 1)/n—think
about it. To produce a value for e by a
simple Basic program is not too difficult:
1000 M=0:T=1:E=0
4010 REPEAT
1020 M=M+1:T=TM:E=E+T
1030 UNTILT = 0
and this will produce a value correct to
about 7 decimal places — hardly an

earth-shattering calculation, but then hard-
ly earth-shattering accuracy either. | want
to rule the digits.
Suppose | asked you to calculate the

value of e correct to a small number of
decimal places, say 20? Suppose that |
‘was cruel (am cruel) and you had to work it
out by hand (assume that you can still
remember how to add, subtract, divide and
multiply)? First, you would calculate term
1, ie 1/1), to 20 decimal places — actually
the answer is 1. Second, you would take
the result of t(1), and divide that by 2, to
obtain t(2) — answer .5. t(3) is .5 divided
by 3, and does not finish exactly — .1
followed by an infinite number of 6s.

There are various ways in which it is
Possible to cope with these never-ending
6s, including: forget about it, just have a 1
and then nineteen 6s; round the last 6 up
to give a 7; or perform the calculation to a
greater number of digits, and forget about
rounding until the very end (the end comes
when all the digits of the term are zero). |
propose to use the third variant, because it

is simpler and is more accurate than
rounding at the end of each term's 20
digits.

So, we have worked out how to perform
the operation: take each succeeding term,
divide it by the correct factor, and then add
the result to the cumulating total. All we
have to do is to work out how to divide long
numbers (lots of little divisions), and then
how to add all the terms together (and
round the result).

The most important part of the program
is that between lines 10 and 100, and in
line 110, the formatter (@9%) is set to
produce 1 digit wide output (for the output
at lines 300 to 330), At 120 the number of

digits (N%) is input, and 4 added to that
number — the extra digits accuracy.
Term%(N%) is the array | use to store the
N% digits of the successive terms, and
E%(N%) is the array used to store the
cumulated total (remember N% is now 4
more than the number of digits needed in
the result).

Line 140 initialises the zero elements of
Term% and E% to 1: the zero element is
the whole number, and elements 1 to N%
are the N% decimal places; the initial
value of e (before any term) is 1, and the
first term is also 1. M% (the term number)

50
eo)
7@REM

DIM

miet

NEXT a% 3

END ¢

PROC_DIVISION +

DEF PROC_TERNS +
= TERMZ(IZ+1) + 10% (TERMZ (1%) -M%e 1TH)

(c) BORIS ALLAN, 1985

@%e1 : REM SETS FORMAT
INPUT

TERM (Ni
TERMZ(@)=1 ¢

4

REPEAT SUMZ=0 : REM BUILDS UP TERMS
FOR 1%= TO N%

1%)©)@ THEN PROC_DIVISION

+ REM ALL TERMS ARE ZERO

=N% TO 1 STEP -1 3
4 THEN E%(1%)=E% (1%) +EX(T%+1) DIV
TO 1 STEP -1
THEN PROC_SPLITTING
NEXT 1%

4: REM READY TO PRINT OUT RESULT

PRINT E%(1%) 5 2 NEXT 1%

REM OF MAIN PROGRAM

REM DIVIDING BY M%

IF 1%<N% THEN PROC_TERMS
ENDPROC : REM DIVISION

REM ADDING TERMS

SUM%=SUMZ+1T%

(im) DIV SUM
JH) =ELCIA-IK) + 1TH

EX(IK)=E%(1%) ~ SUMZ®IT%
ENDPROC + REM _SPLITTING

REM ISOLATES ENTRIES
+ REM ROUNDING

+ PRINT

450 ENDPROC : REM _TERMS
460
47@ DEF PROC_SPLITTING : REM DISTRIBUTING TERMS
480 SUMZ=1 : FOR K%=1 TO J% : SUM% = SUMZ¥10 z NEXT KX

BBC & EDUCATION

starts at 1 — line 150.
From 170 to 220 a short routine is

repeated until a variable Sum% is zero:
the first thing to happen is that Sum% is

set to zero. For each element/digit from 0

to N% (line 180) a check is made to see if

that element of the Term% array is zero, if

not Proc_division is called.
The routine at 350 to 380 is made into a

Proc, and not incorporated into the main

program, because it clarifies the condition-

al statement at line 190 (and obviates the
need for a Goto). At line 360, the existing

value stored in the /%th element of

Term% is integer divided by M% (the

number of the term in the sequence). If the
element is not the last in the array (ie
1%<>N%) then a call is made to Proc_
terms (again to save a Golo).
When one divides a number, the re-

mainder of the division is carried on to the
next digit in the sequence: this is what

occurs in lines 410 to 420. Line 430 is

where the array E% is cumulated. In line

440 Sum% is incremented and, if no
arithmetic is performed (ie, all zeros),

Sum% ends up as zero. After these calls,

control returns to line 200 where M% is

incremented by 1. This continues until

Sum% =0, stasis.
The next segment (240 to 280) ex-

amines successive elements of E%, from

the least significant leftwards. Lines 260 to

"280 operate on three elements at a time,

based on the element /% by use of

Proc_splitting.

In line 480, Sum% takes the value 10,

100, or 1000, depending on the value of

J% — this routine splits each value in an

element steadily into digits (tens, hundreds

and thousands), to take into account the
fact that a value stored in E%(1%) will

probably be greater than 9. The number of
elements is greater (by 4) than the number

of digits accuracy, and at line 250 the

value stored in element N%—4is rounded.

The section from 300 to 330 prints out

the value to the specified number of digits:

lines 305 and 325 switch the printer on and
off — you know what to do if you have no

printer.

Here is a problem: Improve this routine,
and implement it for positive and negative
values of X, where the exponent of X is:
exp(X) = 1+ XE + X22! + XOSIS! +

First prize: 1 copy of my BBC book from
Sunshine. Second prize: 1 copy of my
BBC book from Sunshine, plus an auto-
graphed photograph. a

2. 7182818284590452353
5945713821785251664
B15:
44761 4606680822648001 6847741 18!
331384583000752044933826560297 606
1692836819925515108:
87931
496465105820
237646480429:

3152096183690388707016768

978442505695

0417189861 0687396765521 267 1546889570350354

1019011573834 1879307021540891499348841675092
10753907774499206955 1 702761838606261
328709 127443747047251 069697720931014

369677 0785449969967 9468644549059
351 482208269895 1 93668053 182:

197068416140397019837679732068328
69811251

28869598

109961818815930416905
463244

4054625

@ 2 Independent Fire Buttons

@ Plugs into edge connector

@Atari joystick compatible

@ Joystick with Interface £29.90

Name...

Address..

Please send me:

SpectrumL] 2x81L] Jupiter AceL]

interface and tape @ £24.00

@8 Directional Microswitched action

@\nterface complete with edge connector

joystick, interface, and tape @ £29.90... |£

At last! A joystick that works!
Cambridge Computing bring you the first tnteees joystick.
Works on all existing software - regardless of which keys the program

uses. No need for specially written software. Features include:

@ Compatible with Spectrum, ZX81, Jupiter Ace

SpectrumC] Zx81L) Jupiter Ace!
joysticks @ £7.00

SpectrumC] ZX81L] Jupiter AceL]
Total including VAT..

€(CAMBRIDGE COMPUTING

1 Benson Street,

Please make cheques

and P.O.s payable to:
Cambridge Computing, PCG

Cambridge CB4 30J.

Enquiries from dealers
are welcome, ring

Chris Lloyd on
0223-522905

