A fundamental constant

Boris Allan presents a program to calculate the value ofe

The exponential, e, the base of natural logarithms, is a fundamental constant in mathematics. e appears in many guises, especially in calculus, and has a very simple definition:
$e=1+1 / 1 \mid+1 / 2 t+1 / 3!+2 / 4!+1 / 5 t+$
and onwards. In English, this means that e is the sum of 1 plus the reciprocal of the factorial of 1 , plus the reciprocal of the factorial of 2, plus the reciprocal of the faclorial of 3, and so forth. The factorial of, say, 4 is $4 \times 3 \times 2 \times 2 \times 1$ and so it is simple to realise that $4!=4 \times 3!$

Rewriting the expansion for θ, we can produce:
$B=1+t(1)+t(2)+u(3)+(4)+(4)+$
where, in general, $2(n)=t(n-1) / n$ - think about it. To produce a value for θ by a simple Basic program is not too difficult:
$1000 \mathrm{M}=0: \mathrm{T}=1: \mathrm{E}=0$
1010 REPEAT
$1020 \mathrm{M}=\mathrm{M}+1: \mathrm{T}=\mathrm{T} M: E=E+T$
1030 UNTLL $T=0$
and this will produce a value correct to about 7 decimal piaces - hardly an
earth-shattering calculation, but then hardly earth-shattering accuracy either. I want to rule the digits.

Suppose I asked you to calculate the value of e correct to a small number of decimal places, say 20? Suppose that I was cruel (am cruel) and you had to work it out by hand (assume that you can still remember how to add, subtract, divide and multiply)? First, you would calculate term 1 , ie (1), to 20 decimal places - actually the answer is 1 . Second, you would take the result of $I(1)$, and divide that by 2 , to oblain $t(2)$ - answer .5. $t(3)$ is .5 divided by 3 , and does not finish exactly -.1 followed by an infinite number of 6 s .

There are various ways in which it is possible to cope with these never-ending 6s, including: forget about it, just have a 1 and then nineteen 6 s; round the last 6 up to give a 7 ; or perform the calculation to a greater number of digits, and forget about rounding until the very end (the end comes when all the digits of the term are zero). I propose to use the third variant, because it
is simpler and is more accurate than rounding at the end of each term's 20 digits.

So, we have worked out how to perform the operation: take each succeeding term, divide it by the correct factor, and then add the result to the cumulating total. All we have to do is to work out how to divide long numbers (iots of little divisions), and then how to add all the terms together (and round the result).

The most important part of the program is that between lines 10 and 100, and in line 110, the formatter (@\%) is set to produce 1 digit wide output (for the output at lines 300 to 330). At 120 the number of digits ($\mathrm{N} \%$) is input, and 4 added to that number - the extra digits accuracy. Term\% (N\%) is the array I use to store the $\mathrm{N} \%$ digits of the successive lerms, and $E \%(N \%)$ is the array used to store the cumulated total (remember N\% is now 4 more than the number of digits needed in the result).

Line 140 initialises the zero elements of Term\% and E\% to 1: the zero element is the whole number, and elements 1 to $\mathrm{N} \%$ are the $N \%$ decimal places; the initial value of e (before any term) is 1 , and the first term is also 1. $M \%$ (the term number)

```
10F
4gREM CALLULATION OF THE CDINSTAINT E
5a
60
TGREM (C) BORIS ALLAN, 1983
90
10OREM
110 6%=1 I REM SETS FDRMAT
120 INFUT N% : NX=N%+4
130 DIM TEFM% (NK), E% (NX)
14D TERM% (䛕=1 :E% ( ( ) =1
150 M%=1
160
170 REPEAT SUM%=0 & REM EUILDS UP TERMS
1E\emptyset FOR I%=\emptyset TO N%
190 IF TERM%{I%}<\O THEN PRDC_DIVISIDN
200 NENT 1%
10 m%=m%+1
220 LUTIIL SUFF%=0 & REM ALL TERMS ARE IERO
230
2AD FDR I%=N% TO 1 STEF -1 & REM 1SDLATES ENTRIES
250 IF I%=N%-4 THEN E% (I%)=E%{1%)+E%(1% +1) DIV S : REM RDUNDING
260 FOR J%=3 TO & STEP -1
270 IF 1%>=3% THEN PROC_SPLITTING
2&0 NEXT J% & NEXT I%
290
30D NX=N%-4 : REM READY TO PRINT OUT RESULT
305 VOU 2
310 PFINT E%(0);".":
320 FOR 1%=1 TO N% : PRINT EX (I%)& & NEXT I% & FRINT
325 VDU }
33\ END & REM DF MAIN PRDBRAM
340
SS@ DEF FROC_DIVISION: FEM DIVIDINIS EY M%
360 ITKETEFM1%(1z) DIV M%
37% IF JK<SNK% THEN PROC_TERMS
3BQ ENDPROC I REM _DIVISILN
390
400 DEF PROC TERMS & REM ADDING TERMS
410 TERM% (I%+1) = TEFNA%(I%+1) + 10* (TERM%{I%)-M%*IT%)
426 TERM% (I%) = IT%
430E%({I%) = E%(I%)+IT%.
440 SUM%=SUM% + IT%
450 ENDPFOC : REM _TERMS
460
470 DEF PROC SPLITTING & REM DISTRIEUTING TERMS
4B6 SUM%=1 ; FOR K%=1 TO J% I SUM% = SUM% %10 ; NEXT K%
4पण IT%=E%(1%) DIV SUM%
S0日 E%(I%-J%)=E%(I%-J%) + IT%
SI0 E%(1%)=E%:1I%) - Sur1% & IT%
S20 ENDPROL : FEM _SFLITTING
```

starts at 1 - line 150.
From 170 to 220 a short routine is repeated until a variable Sum\% is zero: the first thing to happen is that Sum\% is set to zero. For each element/digit from 0 to $\mathrm{N} \%$ (line 180) a check is made to see if that element of the Term\% array is zero, if not Proc-division is called.
The routine at 350 to 380 is made into a Proc, and not incorporated into the main program, because it clarifies the conditional statement at line 190 (and obviates the need for a Goto). At line 360 , the existing value stored in the 1% th element of Term\% is integer divided by $M \%$ (the number of the term in the sequence). If the element is not the last in the array (ie $1 \%<>N \%$) then a call is made to Procterms (again to save a Goto).

When one divides a number, the re-
mainder of the division is carried on to the next digit in the sequence: this is what occurs in lines 410 to 420 . Line 430 is where the array $E \%$ is cumulated. In line 440 Sum \% is incremented and, if no arithmetic is performed (ie, all zeros), Sum\% ends up as zero. After these calls, control returns to line 200 where $M \%$ is incremented by 1. This continues untiI Sum $\%=0$, stasis.
The next segment (240 to 280) examines successive elements of $E \%$, from the least significant leftwards. Lines 260 to ' 280 operate on three elements at a time, based on the element 1% by use of Proc_splitting.

In line 480, Sum\% takes the value 10, 100 , or 1000 , depending on the value of $J \%$ - this routine splits each value in an element steadily into digits (tens, hundreds
and thousands), to take into account the fact that a value stored in $E \%(1 \%)$ will probably be greater than 9 . The number of elements is greater (by 4) than the number of digits accuracy, and at line 250 the value stored in element $N \%-4$ is rounded.
The section from 300 to 330 prints out the value to the specified number of digits: lines 305 and 325 switch the printer on and off - you know what to do if you have no printer.

Here is a probiem: Improve this routine, and implement it for positive and negative values of X, where the exponent of X is: $\exp (X)=1+X 11+X \wedge 2 / 21+X \wedge 3 / 31+$

First prize: 1 copy of my BBC book from Sunshine. Second prize: 1 copy of my BBC book from Sunshine, plus an autographed photograph.

At last! A joystick that works! Cambridge Computing bring you the first intelligent joystick.
 Works on all existing software - regardless of which keys the program

uses. No need for specially written software. Features include:

- Compatible with Spectrum, 2X81, Jupiter Ace
- 2 Independent Fire Buttons
- 8 Directional Microswitched action
- Plugs into edge connector
- Interface complete with edge connector
- Atari joystick compatible
- Joystick with Interface £.29.90

Name.
Address..
clude:
Please send me:
...........joystick, interface, and tape @ $£ 29.90$.... Spectrum $\square 2 \times 81 \square$ Jupiter Ace \square
..........interface and tape @ $£ 24.00$. £
Spectrum \square ZX81
..........joysticks @ $£ ~ £ 7.00$. ε
Spectrum \square ZX81 \square Jupiter Ace \square
Total including VAT......... £

Enquiries from dealers are welcome, ring Chris Lloyd on 0223-522905

