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A fundamental constant 
Boris Allan presents a program to calculate the value of e 

‘he exponential, e, the base of natural 
logarithms, is a fundamental constant 

in mathematics. e appears in many guises, 
especially in calculus, and has a very 
simple definition: 
eH 141+ 1/214 Val 14! + 1/51 + 
and onwards. In English, this means that e 
is the sum of 1 plus the reciprocal of the 
factorial of 1, plus the reciprocal of the 
factorial of 2, plus the reciprocal of the 
factorial of 3, and so forth, The factorial of, 
say,4is4x3x2x2x 1 andsoitis 
simple to realise that 4! = 4 x 3! 

Rewriting the expansion for e, we can 
produce: 
2 = 1+ t(1) +12) +113) + 14) +5) + 
where, in general, t(n) = t(n — 1)/n—think 
about it. To produce a value for e by a 
simple Basic program is not too difficult: 
1000 M=0:T=1:E=0 
4010 REPEAT 
1020 M=M+1:T=TM:E=E+T 
1030 UNTILT = 0 
and this will produce a value correct to 
about 7 decimal places — hardly an 

earth-shattering calculation, but then hard- 
ly earth-shattering accuracy either. | want 
to rule the digits. 
Suppose | asked you to calculate the 

value of e correct to a small number of 
decimal places, say 20? Suppose that | 
‘was cruel (am cruel) and you had to work it 
out by hand (assume that you can still 
remember how to add, subtract, divide and 
multiply)? First, you would calculate term 
1, ie 1/1), to 20 decimal places — actually 
the answer is 1. Second, you would take 
the result of t(1), and divide that by 2, to 
obtain t(2) — answer .5. t(3) is .5 divided 
by 3, and does not finish exactly — .1 
followed by an infinite number of 6s. 

There are various ways in which it is 
Possible to cope with these never-ending 
6s, including: forget about it, just have a 1 
and then nineteen 6s; round the last 6 up 
to give a 7; or perform the calculation to a 
greater number of digits, and forget about 
rounding until the very end (the end comes 
when all the digits of the term are zero). | 
propose to use the third variant, because it 

is simpler and is more accurate than 
rounding at the end of each term's 20 
digits. 

So, we have worked out how to perform 
the operation: take each succeeding term, 
divide it by the correct factor, and then add 
the result to the cumulating total. All we 
have to do is to work out how to divide long 
numbers (lots of little divisions), and then 
how to add all the terms together (and 
round the result). 

The most important part of the program 
is that between lines 10 and 100, and in 
line 110, the formatter (@9%) is set to 
produce 1 digit wide output (for the output 
at lines 300 to 330), At 120 the number of 

digits (N%) is input, and 4 added to that 
number — the extra digits accuracy. 
Term%(N%) is the array | use to store the 
N% digits of the successive terms, and 
E%(N%) is the array used to store the 
cumulated total (remember N% is now 4 
more than the number of digits needed in 
the result). 

Line 140 initialises the zero elements of 
Term% and E% to 1: the zero element is 
the whole number, and elements 1 to N% 
are the N% decimal places; the initial 
value of e (before any term) is 1, and the 
first term is also 1. M% (the term number) 

50 
eo) 
7@REM 

DIM 

miet 

NEXT a% 3 

END ¢ 

PROC_DIVISION + 

DEF PROC_TERNS + 
= TERMZ(IZ+1) + 10% (TERMZ (1%) -M%e 1TH) 

(c) BORIS ALLAN, 1985 

@%e1 : REM SETS FORMAT 
INPUT 

TERM (Ni 
TERMZ(@)=1 ¢ 

4 

REPEAT SUMZ=0 : REM BUILDS UP TERMS 
FOR 1%= TO N% 

1%)©)@ THEN PROC_DIVISION 

+ REM ALL TERMS ARE ZERO 

=N% TO 1 STEP -1 3 
4 THEN E%(1%)=E% (1%) +EX(T%+1) DIV 
TO 1 STEP -1 
THEN PROC_SPLITTING 
NEXT 1% 

4: REM READY TO PRINT OUT RESULT 

PRINT E%(1%) 5 2 NEXT 1% 

REM OF MAIN PROGRAM 

REM DIVIDING BY M% 

IF 1%<N% THEN PROC_TERMS 
ENDPROC : REM DIVISION 

REM ADDING TERMS 

SUM%=SUMZ+1T% 

(im) DIV SUM 
JH) =ELCIA-IK) + 1TH 

EX(IK)=E%(1%) ~ SUMZ®IT% 
ENDPROC + REM _SPLITTING 

REM ISOLATES ENTRIES 
+ REM ROUNDING 

+ PRINT 

450 ENDPROC : REM _TERMS 
460 
47@ DEF PROC_SPLITTING : REM DISTRIBUTING TERMS 
480 SUMZ=1 : FOR K%=1 TO J% : SUM% = SUMZ¥10 z NEXT KX 
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starts at 1 — line 150. 
From 170 to 220 a short routine is 

repeated until a variable Sum% is zero: 
the first thing to happen is that Sum% is 

set to zero. For each element/digit from 0 

to N% (line 180) a check is made to see if 

that element of the Term% array is zero, if 

not Proc_division is called. 
The routine at 350 to 380 is made into a 

Proc, and not incorporated into the main 

program, because it clarifies the condition- 

al statement at line 190 (and obviates the 
need for a Goto). At line 360, the existing 

value stored in the /%th element of 

Term% is integer divided by M% (the 

number of the term in the sequence). If the 
element is not the last in the array (ie 
1%<>N%) then a call is made to Proc_ 
terms (again to save a Golo). 
When one divides a number, the re- 

mainder of the division is carried on to the 
next digit in the sequence: this is what 

occurs in lines 410 to 420. Line 430 is 

where the array E% is cumulated. In line 

440 Sum% is incremented and, if no 
arithmetic is performed (ie, all zeros), 

Sum% ends up as zero. After these calls, 

control returns to line 200 where M% is 

incremented by 1. This continues until 

Sum% =0, stasis. 
The next segment (240 to 280) ex- 

amines successive elements of E%, from 

the least significant leftwards. Lines 260 to 

"280 operate on three elements at a time, 

based on the element /% by use of 

Proc_splitting. 

In line 480, Sum% takes the value 10, 

100, or 1000, depending on the value of 

J% — this routine splits each value in an 

element steadily into digits (tens, hundreds 

and thousands), to take into account the 
fact that a value stored in E%(1%) will 

probably be greater than 9. The number of 
elements is greater (by 4) than the number 

of digits accuracy, and at line 250 the 

value stored in element N%—4is rounded. 

The section from 300 to 330 prints out 

the value to the specified number of digits: 

lines 305 and 325 switch the printer on and 
off — you know what to do if you have no 

printer. 

Here is a problem: Improve this routine, 
and implement it for positive and negative 
values of X, where the exponent of X is: 
exp(X) = 1+ XE + X22! + XOSIS! + 

First prize: 1 copy of my BBC book from 
Sunshine. Second prize: 1 copy of my 
BBC book from Sunshine, plus an auto- 
graphed photograph. a 

2. 7182818284590452353 
5945713821785251664 
B15: 
44761 4606680822648001 6847741 18! 
331384583000752044933826560297 606 
1692836819925515108: 
87931 
496465105820 
237646480429: 

3152096183690388707016768 

978442505695 

0417189861 0687396765521 267 1546889570350354 

1019011573834 1879307021540891499348841675092 
10753907774499206955 1 702761838606261 
328709 127443747047251 069697720931014 

369677 0785449969967 9468644549059 
351 482208269895 1 93668053 182: 

197068416140397019837679732068328 
69811251 

28869598 

109961818815930416905 
463244 

4054625 

@ 2 Independent Fire Buttons 

@ Plugs into edge connector 

@Atari joystick compatible 

@ Joystick with Interface £29.90 

Name... 

Address.. 

Please send me: 

SpectrumL] 2x81L] Jupiter AceL] 

interface and tape @ £24.00 

@8 Directional Microswitched action 

@\nterface complete with edge connector 

joystick, interface, and tape @ £29.90... |£ 

At last! A joystick that works! 
Cambridge Computing bring you the first tnteees joystick. 
Works on all existing software - regardless of which keys the program 

uses. No need for specially written software. Features include: 

@ Compatible with Spectrum, ZX81, Jupiter Ace 

SpectrumC] Zx81L) Jupiter Ace! 
joysticks @ £7.00 

SpectrumC] ZX81L] Jupiter AceL] 
Total including VAT.. 

€( CAMBRIDGE COMPUTING 

1 Benson Street, 

Please make cheques 

and P.O.s payable to: 
Cambridge Computing, PCG 

Cambridge CB4 30J. 

Enquiries from dealers 
are welcome, ring 

Chris Lloyd on 
0223-522905 


